These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 25241225)
1. In vivo formaldehyde cross-linking: it is time for black box analysis. Gavrilov A; Razin SV; Cavalli G Brief Funct Genomics; 2015 Mar; 14(2):163-5. PubMed ID: 25241225 [TBL] [Abstract][Full Text] [Related]
2. Second-generation method for analysis of chromatin binding with formaldehyde-cross-linking kinetics. Zaidi H; Hoffman EA; Shetty SJ; Bekiranov S; Auble DT J Biol Chem; 2017 Nov; 292(47):19338-19355. PubMed ID: 28972159 [TBL] [Abstract][Full Text] [Related]
8. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Aparicio O; Geisberg JV; Struhl K Curr Protoc Cell Biol; 2004 Sep; Chapter 17():Unit 17.7. PubMed ID: 18228445 [TBL] [Abstract][Full Text] [Related]
9. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Gavrilov A; Eivazova E; Priozhkova I; Lipinski M; Razin S; Vassetzky Y Methods Mol Biol; 2009; 567():171-88. PubMed ID: 19588093 [TBL] [Abstract][Full Text] [Related]
10. Fixated on fixation: using ChIP to interrogate the dynamics of chromatin interactions. Keren L; Segal E Genome Biol; 2013 Nov; 14(11):138. PubMed ID: 24257511 [TBL] [Abstract][Full Text] [Related]
11. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Aparicio O; Geisberg JV; Sekinger E; Yang A; Moqtaderi Z; Struhl K Curr Protoc Mol Biol; 2005 Feb; Chapter 21():Unit 21.3. PubMed ID: 18265358 [TBL] [Abstract][Full Text] [Related]
12. Preparation of cross-linked cellular extracts with formaldehyde. Nilsen TW Cold Spring Harb Protoc; 2014 Sep; 2014(9):1001-3. PubMed ID: 25183820 [TBL] [Abstract][Full Text] [Related]
13. 3C technology: analyzing the spatial organization of genomic loci in vivo. Splinter E; Grosveld F; de Laat W Methods Enzymol; 2004; 375():493-507. PubMed ID: 14870685 [No Abstract] [Full Text] [Related]
14. Detection of short-range chromatin interactions by chromosome conformation capture (3C) in yeast. Singh BN; Hampsey M Methods Mol Biol; 2014; 1205():209-18. PubMed ID: 25213247 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Nucleolar Localization of the RENT Complex to Ribosomal DNA by Chromatin Immunoprecipitation Assays. Huang J; Iglesias N; Moazed D Methods Mol Biol; 2017; 1505():195-213. PubMed ID: 27826866 [TBL] [Abstract][Full Text] [Related]
16. A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae. Grably M; Engelberg D Methods Mol Biol; 2010; 638():211-24. PubMed ID: 20238272 [TBL] [Abstract][Full Text] [Related]
17. ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin. Ostrow AZ; Viggiani CJ; Aparicio JG; Aparicio OM Methods Mol Biol; 2015; 1300():155-68. PubMed ID: 25916712 [TBL] [Abstract][Full Text] [Related]
18. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547 [TBL] [Abstract][Full Text] [Related]
19. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Toews J; Rogalski JC; Clark TJ; Kast J Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538 [TBL] [Abstract][Full Text] [Related]