These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 25241407)

  • 1. Synergy between stresses: an interaction between spaceflight-associated conditions and the microgravity response.
    Beckingham KM
    Mol Ecol; 2010 Oct; 19(19):4105-7. PubMed ID: 25241407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome.
    Herranz R; Benguría A; Laván DA; López-Vidriero I; Gasset G; Javier Medina F; van Loon JJ; Marco R
    Mol Ecol; 2010 Oct; 19(19):4255-64. PubMed ID: 20819157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development.
    Kiss JZ; Wolverton C; Wyatt SE; Hasenstein KH; van Loon JJWA
    Front Plant Sci; 2019; 10():1577. PubMed ID: 31867033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells.
    Thiel CS; Tauber S; Christoffel S; Huge A; Lauber BA; Polzer J; Paulsen K; Lier H; Engelmann F; Schmitz B; Schütte A; Raig C; Layer LE; Ullrich O
    Sci Rep; 2018 Sep; 8(1):13267. PubMed ID: 30185876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster.
    Mhatre SD; Iyer J; Petereit J; Dolling-Boreham RM; Tyryshkina A; Paul AM; Gilbert R; Jensen M; Woolsey RJ; Anand S; Sowa MB; Quilici DR; Costes SV; Girirajan S; Bhattacharya S
    Cell Rep; 2022 Sep; 40(10):111279. PubMed ID: 36070701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Drosophila (fruit fly) activity during microgravity exposure.
    Miller MS; Keller TS
    J Gravit Physiol; 1999 Jul; 6(1):P99-100. PubMed ID: 11543046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational biology within the German Space Program: goals, achievements, and perspectives.
    Ruyters G; Friedrich U
    Protoplasma; 2006 Dec; 229(2-4):95-100. PubMed ID: 17180489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.
    Herranz R; Larkin OJ; Hill RJ; Lopez-Vidriero I; van Loon JJ; Medina FJ
    BMC Evol Biol; 2013 Jun; 13():133. PubMed ID: 23806134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight.
    Gao Y; Xu D; Zhao L; Sun Y
    Mutat Res; 2017 Jan; 795():15-26. PubMed ID: 28088539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity.
    Zhao S; Liu H; Li Y; Song Y; Wang W; Zhang C
    Med Biol Eng Comput; 2020 Mar; 58(3):509-518. PubMed ID: 31900816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome.
    Camberos V; Baio J; Mandujano A; Martinez AF; Bailey L; Hasaniya N; Kearns-Jonker M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models to study gravitational biology of Mammalian reproduction.
    Tou J; Ronca A; Grindeland R; Wade C
    Biol Reprod; 2002 Dec; 67(6):1681-7. PubMed ID: 12444041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Microgravity on Immunological States.
    Hicks J; Olson M; Mitchell C; Juran CM; Paul AM
    Immunohorizons; 2023 Oct; 7(10):670-682. PubMed ID: 37855736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.
    Clément GR; Bukley AP; Paloski WH
    Front Syst Neurosci; 2015; 9():92. PubMed ID: 26136665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.