These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 25241506)
21. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes]. Wang T; Feng H; Wang K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290 [TBL] [Abstract][Full Text] [Related]
22. Mechanical behavior of coronary stents investigated through the finite element method. Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000 [TBL] [Abstract][Full Text] [Related]
23. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods. Shanahan C; Tiernan P; Tofail SAM J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400 [TBL] [Abstract][Full Text] [Related]
24. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
25. Modeling of stents exhibiting negative Poisson's ratio effect. Raamachandran J; Jayavenkateshwaran K Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858 [TBL] [Abstract][Full Text] [Related]
26. Numerical investigations of the mechanical properties of braided vascular stents. Fu W; Xia Q; Yan R; Qiao A Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075 [TBL] [Abstract][Full Text] [Related]
27. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents. Wang Y; Wu H; Fan S; Wu J; Yang S Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394 [TBL] [Abstract][Full Text] [Related]
28. Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. De Bock S; Iannaccone F; De Beule M; Van Loo D; Vermassen F; Verhegghe B; Segers P J Biomech; 2013 Sep; 46(14):2477-82. PubMed ID: 23953501 [TBL] [Abstract][Full Text] [Related]
29. Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents. Gastaldi D; Sassi V; Petrini L; Vedani M; Trasatti S; Migliavacca F J Mech Behav Biomed Mater; 2011 Apr; 4(3):352-65. PubMed ID: 21316623 [TBL] [Abstract][Full Text] [Related]
30. [Nonlinear finite element analysis for compression behavior of intravascular stents]. Ning J; Zeng P; Lei LP Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jan; 32(1):10-3. PubMed ID: 18438042 [TBL] [Abstract][Full Text] [Related]
31. Finite element analysis of NiTi self-expandable heart valve stent. Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047 [TBL] [Abstract][Full Text] [Related]
32. A computational study of crimping and expansion of bioresorbable polymeric stents. Qiu TY; Song M; Zhao LG Mech Time Depend Mater; 2018; 22(2):273-290. PubMed ID: 29962898 [TBL] [Abstract][Full Text] [Related]
33. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Chen C; Chen J; Wu W; Shi Y; Jin L; Petrini L; Shen L; Yuan G; Ding W; Ge J; Edelman ER; Migliavacca F Biomaterials; 2019 Nov; 221():119414. PubMed ID: 31419654 [TBL] [Abstract][Full Text] [Related]
34. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Wang WQ; Liang DK; Yang DZ; Qi M J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584 [TBL] [Abstract][Full Text] [Related]
35. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate. Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984 [TBL] [Abstract][Full Text] [Related]
37. Effects of design parameters on the radial force of percutaneous aortic valve stents. Kumar GV; Mathew L Cardiovasc Revasc Med; 2010; 11(2):101-4. PubMed ID: 20347800 [TBL] [Abstract][Full Text] [Related]
38. [Finite Element Analysis of Biodegradable Polylactic Acid Stent]. Yan W; Yao T Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Jan; 42(1):14-17. PubMed ID: 29862738 [TBL] [Abstract][Full Text] [Related]
39. [Optimization of intra-vascular stent designs]. Zhou YH Zhongguo Yi Liao Qi Xie Za Zhi; 2007 Mar; 31(2):98-100. PubMed ID: 17552170 [TBL] [Abstract][Full Text] [Related]
40. Optimizing the compression resistance of low-nickel stainless steel coronary stents using finite element and response surface methodology. Wang L; Wang W; Jiang Y; Yuan Y J Biomech; 2024 Jul; 172():112227. PubMed ID: 39004042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]