These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 25242148)
1. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Liu H; Turner CH Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148 [TBL] [Abstract][Full Text] [Related]
2. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes. Liu H; Turner CH J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221 [TBL] [Abstract][Full Text] [Related]
3. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation. Zhang YQ; Liu YJ; Liu YL; Zhao JX J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of carbon dioxide and ammonia in transition metal-doped boron nitride nanotubes. Lima KAL; Cunha WFD; Monteiro FF; Enders BG; Jr MLP; Jr LAR J Mol Model; 2019 Nov; 25(12):359. PubMed ID: 31773288 [TBL] [Abstract][Full Text] [Related]
8. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. Mortazavifar A; Raissi H; Shahabi M J Biomol Struct Dyn; 2019 Nov; 37(18):4852-4862. PubMed ID: 30721644 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes. Wang RX; Zhang DJ; Zhu RX; Liu CB J Mol Model; 2014 Feb; 20(2):2093. PubMed ID: 24504454 [TBL] [Abstract][Full Text] [Related]
10. Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. Nasrabadi AT; Foroutan M J Phys Chem B; 2010 Dec; 114(47):15429-36. PubMed ID: 21062092 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Wang R; Zhang D; Liu Y; Liu C Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655 [TBL] [Abstract][Full Text] [Related]
12. Density Functional Theory-Based Studies Predict Carbon Nanotubes as Effective Mycolactone Inhibitors. Suleiman N; Yaya A; Wilson MD; Aryee S; Kwofie SK Molecules; 2022 Jul; 27(14):. PubMed ID: 35889312 [TBL] [Abstract][Full Text] [Related]
13. Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach. Hasanzade Z; Raissi H J Biomol Struct Dyn; 2020 Feb; 38(3):697-707. PubMed ID: 30900530 [TBL] [Abstract][Full Text] [Related]
14. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation. Ganji MD; Rezvani M J Mol Model; 2013 Mar; 19(3):1259-65. PubMed ID: 23179768 [TBL] [Abstract][Full Text] [Related]
15. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study. Azam MA; Alias FM; Tack LW; Seman RNAR; Taib MFM J Mol Graph Model; 2017 Aug; 75():85-93. PubMed ID: 28531817 [TBL] [Abstract][Full Text] [Related]
17. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions. Sundaram R; Scheiner S; Roy AK; Kar T Phys Chem Chem Phys; 2015 Feb; 17(5):3850-66. PubMed ID: 25559141 [TBL] [Abstract][Full Text] [Related]
18. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study. Zhao JX; Ding YH Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465 [TBL] [Abstract][Full Text] [Related]