These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 25242148)
21. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402 [TBL] [Abstract][Full Text] [Related]
22. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. Wu X; An W; Zeng XC J Am Chem Soc; 2006 Sep; 128(36):12001-6. PubMed ID: 16953642 [TBL] [Abstract][Full Text] [Related]
23. First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes. Shayeganfar F; Beheshtian J; Shahsavari R Langmuir; 2018 Sep; 34(37):11176-11187. PubMed ID: 30139254 [TBL] [Abstract][Full Text] [Related]
24. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study. Wang Y; Zhang J; Huang G; Yao X; Shao Q J Mol Model; 2014 Dec; 20(12):2536. PubMed ID: 25451142 [TBL] [Abstract][Full Text] [Related]
25. In vitro investigation of the cellular toxicity of boron nitride nanotubes. Horváth L; Magrez A; Golberg D; Zhi C; Bando Y; Smajda R; Horváth E; Forró L; Schwaller B ACS Nano; 2011 May; 5(5):3800-10. PubMed ID: 21495683 [TBL] [Abstract][Full Text] [Related]
26. Molecular insights on the dynamic stability of peptide nucleic acid functionalized carbon and boron nitride nanotubes. Saikia N; Taha M; Pandey R Phys Chem Chem Phys; 2021 Jan; 23(1):219-228. PubMed ID: 33325925 [TBL] [Abstract][Full Text] [Related]
27. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature. Rimola A; Sodupe M Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299 [TBL] [Abstract][Full Text] [Related]
28. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
29. Carbon Nanotubes Having Haeckelite Defects as Potential Drug Carriers. Molecular Dynamics Simulation. Torres C; Villarroel I; Rozas R; Contreras L Molecules; 2019 Nov; 24(23):. PubMed ID: 31771295 [TBL] [Abstract][Full Text] [Related]
30. Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. Santosh M; Maiti PK; Sood AK J Nanosci Nanotechnol; 2009 Sep; 9(9):5425-30. PubMed ID: 19928237 [TBL] [Abstract][Full Text] [Related]
31. Quantum DFT methods to explore the interaction of 1-Adamantylamine with pristine, and P, As, Al, and Ga doped BN nanotubes. Nemati-Kande E; Pourasadi A; Aghababaei F; Baranipour S; Mehdizadeh A; Sardroodi JJ Sci Rep; 2022 Nov; 12(1):19972. PubMed ID: 36402905 [TBL] [Abstract][Full Text] [Related]
32. CO2 adsorption by nitrogen-doped carbon nanotubes predicted by density-functional theory with dispersion-correcting potentials. Mackie ID; DiLabio GA Phys Chem Chem Phys; 2011 Feb; 13(7):2780-7. PubMed ID: 21152662 [TBL] [Abstract][Full Text] [Related]
33. Theoretical study on surface modification of BN nanotubes With 1, 2-diaminobenzenes. Peyghan AA; Bagheri Z Acta Chim Slov; 2013; 60(4):743-9. PubMed ID: 24362976 [TBL] [Abstract][Full Text] [Related]
34. Covalent Functionalization of Boron Nitride Nanotubes via Reduction Chemistry. Shin H; Guan J; Zgierski MZ; Kim KS; Kingston CT; Simard B ACS Nano; 2015 Dec; 9(12):12573-82. PubMed ID: 26580970 [TBL] [Abstract][Full Text] [Related]
35. DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Wang R; Zhang D; Liu C Chemosphere; 2017 Feb; 168():18-24. PubMed ID: 27776234 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes. Kang JH; Sauti G; Park C; Yamakov VI; Wise KE; Lowther SE; Fay CC; Thibeault SA; Bryant RG ACS Nano; 2015 Dec; 9(12):11942-50. PubMed ID: 26529472 [TBL] [Abstract][Full Text] [Related]
37. Defects-enhanced dissociation of H2 on boron nitride nanotubes. Wu X; Yang J; Hou JG; Zhu Q J Chem Phys; 2006 Feb; 124(5):054706. PubMed ID: 16468900 [TBL] [Abstract][Full Text] [Related]
38. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. Seo K; Park KA; Kim C; Han S; Kim B; Lee YH J Am Chem Soc; 2005 Nov; 127(45):15724-9. PubMed ID: 16277513 [TBL] [Abstract][Full Text] [Related]
39. Boron nitride nanotubes and nanosheets. Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272 [TBL] [Abstract][Full Text] [Related]
40. Selective adsorption and dissociation of NO, NO Hassanpour A; Kamel M; Ebrahimiasl S; Ebadi AG; Arshadi S; Ghulinezhad Ahangari Z J Mol Model; 2021 Dec; 28(1):6. PubMed ID: 34889992 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]