BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25242290)

  • 1. A novel regeneration of iron citrate solution by biooxidation of iron-oxidizing bacteria.
    Wang YJ; Li DP; Liu C; Zhan GQ; He XH
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1725-9. PubMed ID: 25242290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation.
    Mazuelos A; Moreno JM; Carranza F; Palomino C; Torres A; Villalobo E
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1851-8. PubMed ID: 22911238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L
    Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.
    Mulopo J; Schaefer L
    Water Sci Technol; 2015; 71(11):1672-8. PubMed ID: 26038932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS.
    Kucera J; Bouchal P; Cerna H; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):561-73. PubMed ID: 22057833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of bacterial anaerobic oxidation of elemental sulfur by ferric iron.
    Kucera J; Zeman J; Mandl M; Cerna H
    Antonie Van Leeuwenhoek; 2012 May; 101(4):919-22. PubMed ID: 22249244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis.
    Kucera J; Bouchal P; Lochman J; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Antonie Van Leeuwenhoek; 2013 Apr; 103(4):905-19. PubMed ID: 23291738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for biological oxidation of ferrous ions in a batch bioreactor.
    Zhu N; Shi C; Shang R; Yang C; Xu Z; Wu P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):727-734. PubMed ID: 26621070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.
    Brock TD; Gustafson J
    Appl Environ Microbiol; 1976 Oct; 32(4):567-71. PubMed ID: 825043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y; Suzuki I
    Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dissolved oxygen on the biooxidation process of refractory gold ores.
    Sun LX; Zhang X; Tan WS; Zhu ML
    J Biosci Bioeng; 2012 Nov; 114(5):531-6. PubMed ID: 22883535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.
    Bonnefoy V; Holmes DS
    Environ Microbiol; 2012 Jul; 14(7):1597-611. PubMed ID: 22050575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiology. Feasting on minerals.
    Newman DK
    Science; 2010 Feb; 327(5967):793-4. PubMed ID: 20150475
    [No Abstract]   [Full Text] [Related]  

  • 15. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Leptospirillum-like bacteria and their role in pyrite oxidation].
    Vardanian NS; Akopian VP
    Mikrobiologiia; 2003; 72(4):493-7. PubMed ID: 14526539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads.
    Giaveno A; Lavalle L; Guibal E; Donati E
    J Microbiol Methods; 2008 Mar; 72(3):227-34. PubMed ID: 18294712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.
    Janfada B; Yazdian F; Amoabediny G; Rahaie M
    Biotechnol Appl Biochem; 2015; 62(3):349-56. PubMed ID: 25158614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.