These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Hong ME; Lee KS; Yu BJ; Sung YJ; Park SM; Koo HM; Kweon DH; Park JC; Jin YS J Biotechnol; 2010 Aug; 149(1-2):52-9. PubMed ID: 20600383 [TBL] [Abstract][Full Text] [Related]
5. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene. Hossein Helalat S; Bidaj S; Samani S; Moradi M Enzyme Microb Technol; 2019 May; 124():17-22. PubMed ID: 30797475 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Wimalasena TT; Greetham D; Marvin ME; Liti G; Chandelia Y; Hart A; Louis EJ; Phister TG; Tucker GA; Smart KA Microb Cell Fact; 2014 Mar; 13(1):47. PubMed ID: 24670111 [TBL] [Abstract][Full Text] [Related]
7. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
8. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Zhang MM; Zhao XQ; Cheng C; Bai FW Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519 [TBL] [Abstract][Full Text] [Related]
9. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499 [TBL] [Abstract][Full Text] [Related]
10. [Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae]. Zhao S; Yuan B; Wang X; Chen H; Zhao X; Bai F Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4293-4302. PubMed ID: 34984875 [TBL] [Abstract][Full Text] [Related]
11. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Si T; Luo Y; Xiao H; Zhao H Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568 [TBL] [Abstract][Full Text] [Related]
12. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Baerends RJ; Qiu JL; Rasmussen S; Nielsen HB; Brandt A Appl Environ Microbiol; 2009 Oct; 75(19):6055-61. PubMed ID: 19666729 [TBL] [Abstract][Full Text] [Related]
13. Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance. Azambuja SPH; de Mélo AHF; Bertozzi BG; Inoue HP; Egawa VY; Rosa CA; Rocha LO; Teixeira GS; Goldbeck R Food Res Int; 2024 Aug; 190():114637. PubMed ID: 38945626 [TBL] [Abstract][Full Text] [Related]
14. n-Butanol production by Saccharomyces cerevisiae from protein-rich agro-industrial by-products. Santos BAS; Azambuja SPH; Ávila PF; Pacheco MTB; Goldbeck R Braz J Microbiol; 2020 Dec; 51(4):1655-1664. PubMed ID: 32888143 [TBL] [Abstract][Full Text] [Related]
15. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation. Oshoma CE; Greetham D; Louis EJ; Smart KA; Phister TG; Powell C; Du C PLoS One; 2015; 10(8):e0135626. PubMed ID: 26284784 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024 [TBL] [Abstract][Full Text] [Related]
17. Analysis of metabolite profiles of Saccharomyces cerevisiae strains suitable for butanol production. Azambuja SPH; Teixeira GS; Andrietta MGS; Torres-Mayanga PC; Forster-Carneiro T; Rosa CA; Goldbeck R FEMS Microbiol Lett; 2019 Jul; 366(13):. PubMed ID: 31350996 [TBL] [Abstract][Full Text] [Related]
18. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
19. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
20. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Tosi E; Azzolini M; Guzzo F; Zapparoli G J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]