These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 25242543)
1. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. Kim MS; Min HG; Koo N; Park J; Lee SH; Bak GI; Kim JG J Environ Manage; 2014 Dec; 146():124-130. PubMed ID: 25242543 [TBL] [Abstract][Full Text] [Related]
2. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
3. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Zhang X; Wang H; He L; Lu K; Sarmah A; Li J; Bolan NS; Pei J; Huang H Environ Sci Pollut Res Int; 2013 Dec; 20(12):8472-83. PubMed ID: 23589248 [TBL] [Abstract][Full Text] [Related]
4. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
5. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Zhai X; Li Z; Huang B; Luo N; Huang M; Zhang Q; Zeng G Sci Total Environ; 2018 Sep; 635():92-99. PubMed ID: 29660731 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of biochar and its application in remediation of contaminated soil. Tang J; Zhu W; Kookana R; Katayama A J Biosci Bioeng; 2013 Dec; 116(6):653-9. PubMed ID: 23810668 [TBL] [Abstract][Full Text] [Related]
7. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Park JH; Lee SJ; Lee ME; Chung JW Environ Sci Process Impacts; 2016 Apr; 18(4):514-20. PubMed ID: 27055368 [TBL] [Abstract][Full Text] [Related]
8. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Cervera-Mata A; Navarro-Alarcón M; Rufián-Henares JÁ; Pastoriza S; Montilla-Gómez J; Delgado G Sci Total Environ; 2020 May; 717():137247. PubMed ID: 32092806 [TBL] [Abstract][Full Text] [Related]
9. [Chemical fixation of metals in soil using bone char and assessment of the soil genotoxicity]. Lin AJ; Zhang XH; Su YH; Hu Y; Cao Q; Zhu YG Huan Jing Ke Xue; 2007 Feb; 28(2):232-7. PubMed ID: 17489175 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive treatment via simultaneous removal of copper, lead and zinc from soil washing wastewater using spent coffee grounds. Futalan CM; Kim J; Yee JJ Water Sci Technol; 2019 Mar; 79(6):1029-1041. PubMed ID: 31070583 [TBL] [Abstract][Full Text] [Related]
11. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Cheng S; Chen T; Xu W; Huang J; Jiang S; Yan B Molecules; 2020 Jul; 25(14):. PubMed ID: 32664440 [TBL] [Abstract][Full Text] [Related]
12. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Liang J; Yang Z; Tang L; Zeng G; Yu M; Li X; Wu H; Qian Y; Li X; Luo Y Chemosphere; 2017 Aug; 181():281-288. PubMed ID: 28448909 [TBL] [Abstract][Full Text] [Related]
13. A review on control factors of pyrolysis technology for plants containing heavy metals. Liu Z; Wang LA; Xiao H; Guo X; Urbanovich O; Nagorskaya L; Li X Ecotoxicol Environ Saf; 2020 Mar; 191():110181. PubMed ID: 31951901 [TBL] [Abstract][Full Text] [Related]
14. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Zhou D; Liu D; Gao F; Li M; Luo X Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28644399 [TBL] [Abstract][Full Text] [Related]
15. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Beiyuan J; Tsang DCW; Ok YS; Zhang W; Yang X; Baek K; Li XD Chemosphere; 2016 Sep; 159():426-432. PubMed ID: 27337434 [TBL] [Abstract][Full Text] [Related]
16. Remediation effect of walnut shell biochar on Cu and Pb co-contaminated soils in different utilization types. Peng Q; Wang P; Yang C; Liu J; Si W; Zhang S J Environ Manage; 2024 Jun; 362():121322. PubMed ID: 38824893 [TBL] [Abstract][Full Text] [Related]
17. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Puga AP; Abreu CA; Melo LC; Paz-Ferreiro J; Beesley L Environ Sci Pollut Res Int; 2015 Nov; 22(22):17606-14. PubMed ID: 26146374 [TBL] [Abstract][Full Text] [Related]
18. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Mohamed BA; Ellis N; Kim CS; Bi X Environ Pollut; 2017 Nov; 230():329-338. PubMed ID: 28668594 [TBL] [Abstract][Full Text] [Related]
19. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related]
20. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Uchimiya M; Klasson KT; Wartelle LH; Lima IM Chemosphere; 2011 Mar; 82(10):1438-47. PubMed ID: 21190718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]