These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25242559)

  • 21. Increase in larval gut proteolytic activities and Bti resistance in the Dengue fever mosquito.
    Tetreau G; Stalinski R; David JP; Després L
    Arch Insect Biochem Physiol; 2013 Feb; 82(2):71-83. PubMed ID: 23192850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in
    Batool K; Alam I; Jin L; Xu J; Wu C; Wang J; Huang E; Guan X; Yu XQ; Zhang L
    J Agric Food Chem; 2019 Aug; 67(32):8896-8904. PubMed ID: 31339308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing.
    Paris M; Melodelima C; Coissac E; Tetreau G; Reynaud S; David JP; Despres L
    J Invertebr Pathol; 2012 Feb; 109(2):201-8. PubMed ID: 22115744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor.
    Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K
    Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae.
    Rodríguez-Almazán C; Reyes EZ; Zúñiga-Navarrete F; Muñoz-Garay C; Gómez I; Evans AM; Likitvivatanavong S; Bravo A; Gill SS; Soberón M
    Biochem J; 2012 May; 443(3):711-7. PubMed ID: 22329749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae.
    Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ
    Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop alpha-8 of domain II.
    Fernández LE; Pérez C; Segovia L; Rodríguez MH; Gill SS; Bravo A; Soberón M
    FEBS Lett; 2005 Jul; 579(17):3508-14. PubMed ID: 15963509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin.
    Hua G; Zhang R; Bayyareddy K; Adang MJ
    Biochemistry; 2009 Oct; 48(41):9785-93. PubMed ID: 19747003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two specific membrane-bound aminopeptidase N isoforms from Aedes aegypti larvae serve as functional receptors for the Bacillus thuringiensis Cry4Ba toxin implicating counterpart specificity.
    Aroonkesorn A; Pootanakit K; Katzenmeier G; Angsuthanasombat C
    Biochem Biophys Res Commun; 2015 May; 461(2):300-6. PubMed ID: 25871797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae).
    Fernandez-Luna MT; Lanz-Mendoza H; Gill SS; Bravo A; Soberon M; Miranda-Rios J
    Environ Microbiol; 2010 Mar; 12(3):746-57. PubMed ID: 20002140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti.
    López-Molina S; do Nascimento NA; Silva-Filha MHNL; Guerrero A; Sánchez J; Pacheco S; Gill SS; Soberón M; Bravo A
    PLoS Pathog; 2021 Jan; 17(1):e1009199. PubMed ID: 33465145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches.
    Tetreau G; Bayyareddy K; Jones CM; Stalinski R; Riaz MA; Paris M; David JP; Adang MJ; Després L
    BMC Genomics; 2012 Jun; 13():248. PubMed ID: 22703117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aedes aegypti membrane-bound alkaline phosphatase expressed in Escherichia coli retains high-affinity binding for Bacillus thuringiensis Cry4Ba toxin.
    Thammasittirong A; Dechklar M; Leetachewa S; Pootanakit K; Angsuthanasombat C
    Appl Environ Microbiol; 2011 Oct; 77(19):6836-40. PubMed ID: 21856837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cry4Aa and Cry4Ba Mosquito-Active Toxins Utilize Different Domains in Binding to a Particular
    Dechkla M; Charoenjotivadhanakul S; Imtong C; Visitsattapongse S; Li HC; Angsuthanasombat C
    Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional
    Nascimento NA; Torres-Quintero MC; Molina SL; Pacheco S; Romão TP; Pereira-Neves A; Soberón M; Bravo A; Silva-Filha MHNL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins.
    Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA
    Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning, expression and activity of ATP-binding protein in Bacillus thuringiensis toxicity modulation against Aedes aegypti.
    Zhao GH; Liu JN; Hu XH; Batool K; Jin L; Wu CX; Wu J; Chen H; Jiang XY; Yang ZH; Huang XH; Huang EJ; Yu XQ; Guan X; Zhang LL
    Parasit Vectors; 2019 Jun; 12(1):319. PubMed ID: 31238963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae.
    Saengwiman S; Aroonkesorn A; Dedvisitsakul P; Sakdee S; Leetachewa S; Angsuthanasombat C; Pootanakit K
    Biochem Biophys Res Commun; 2011 Apr; 407(4):708-13. PubMed ID: 21439264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function of Aedes aegypti galectin-6 in modulation of Cry11Aa toxicity.
    Hu X; Chen H; Xu J; Zhao G; Huang X; Liu J; Batool K; Wu C; Wu S; Huang E; Wu J; Chowhury M; Zhang J; Guan X; Yu XQ; Zhang L
    Pestic Biochem Physiol; 2020 Jan; 162():96-104. PubMed ID: 31836060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail.
    Stalinski R; Tetreau G; Gaude T; Després L
    J Invertebr Pathol; 2014 Jun; 119():50-3. PubMed ID: 24768915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.