These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1115 related articles for article (PubMed ID: 25242654)
1. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
2. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
4. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
5. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Wüst S; Godla ME; Müller R; Hofmann S Acta Biomater; 2014 Feb; 10(2):630-40. PubMed ID: 24157694 [TBL] [Abstract][Full Text] [Related]
6. Silk-Based Bioinks for 3D Bioprinting. Chawla S; Midha S; Sharma A; Ghosh S Adv Healthc Mater; 2018 Apr; 7(8):e1701204. PubMed ID: 29359861 [TBL] [Abstract][Full Text] [Related]
7. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
8. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
9. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
10. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652 [TBL] [Abstract][Full Text] [Related]
11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
12. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting. Lee HW; Chen KT; Li YE; Yeh YC; Chiang CY; Lee IC Int J Biol Macromol; 2024 Jun; 269(Pt 2):131720. PubMed ID: 38677692 [TBL] [Abstract][Full Text] [Related]
13. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. Huber B; Borchers K; Tovar GE; Kluger PJ J Biomater Appl; 2016 Jan; 30(6):699-710. PubMed ID: 26017717 [TBL] [Abstract][Full Text] [Related]
14. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants. Costa JB; Silva-Correia J; Oliveira JM; Reis RL Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065 [TBL] [Abstract][Full Text] [Related]
15. Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. Trucco D; Sharma A; Manferdini C; Gabusi E; Petretta M; Desando G; Ricotti L; Chakraborty J; Ghosh S; Lisignoli G ACS Biomater Sci Eng; 2021 Jul; 7(7):3306-3320. PubMed ID: 34101410 [TBL] [Abstract][Full Text] [Related]
16. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Li Z; Huang S; Liu Y; Yao B; Hu T; Shi H; Xie J; Fu X Sci Rep; 2018 May; 8(1):8020. PubMed ID: 29789674 [TBL] [Abstract][Full Text] [Related]
17. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844 [TBL] [Abstract][Full Text] [Related]
18. Silk fibroin in tissue engineering. Kasoju N; Bora U Adv Healthc Mater; 2012 Jul; 1(4):393-412. PubMed ID: 23184771 [TBL] [Abstract][Full Text] [Related]
19. Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis. Sun W; Motta A; Shi Y; Seekamp A; Schmidt H; Gorb SN; Migliaresi C; Fuchs S Biomed Mater; 2016 Jun; 11(3):035009. PubMed ID: 27271291 [TBL] [Abstract][Full Text] [Related]
20. Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications. Tan XH; Liu L; Mitryashkin A; Wang Y; Goh JCH ACS Biomater Sci Eng; 2022 Aug; 8(8):3242-3270. PubMed ID: 35786841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]