These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25243326)

  • 1. Determining the electronic confinement of a subsurface metallic state.
    Mazzola F; Edmonds MT; Høydalsvik K; Carter DJ; Marks NA; Cowie BC; Thomsen L; Miwa J; Simmons MY; Wells JW
    ACS Nano; 2014 Oct; 8(10):10223-8. PubMed ID: 25243326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valley splitting in a silicon quantum device platform.
    Miwa JA; Warschkow O; Carter DJ; Marks NA; Mazzola F; Simmons MY; Wells JW
    Nano Lett; 2014 Mar; 14(3):1515-9. PubMed ID: 24571617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors.
    Mazzola F; Wells JW; Pakpour-Tabrizi AC; Jackman RB; Thiagarajan B; Hofmann P; Miwa JA
    Phys Rev Lett; 2018 Jan; 120(4):046403. PubMed ID: 29437461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing Segregation in Highly Phosphorus Doped Silicon Monolayers.
    Keizer JG; Koelling S; Koenraad PM; Simmons MY
    ACS Nano; 2015 Dec; 9(12):12537-41. PubMed ID: 26568129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Atomic Arrangement of Subsurface Dopants in a Silicon Quantum Device Platform.
    Røst HI; Tosi E; Strand FS; Åsland AC; Lacovig P; Lizzit S; Wells JW
    ACS Appl Mater Interfaces; 2023 May; 15(18):22637-22643. PubMed ID: 37114767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 30-band k ⋅ p theory of valley splitting in silicon thin layers.
    Čukarić NA; Partoens B; Tadić MŽ; Arsoski VV; Peeters FM
    J Phys Condens Matter; 2016 May; 28(19):195303. PubMed ID: 27093609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Patterning of Ultrasharp Dopant Profiles in Silicon.
    Cooil SP; Mazzola F; Klemm HW; Peschel G; Niu YR; Zakharov AA; Simmons MY; Schmidt T; Evans DA; Miwa JA; Wells JW
    ACS Nano; 2017 Feb; 11(2):1683-1688. PubMed ID: 28182399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum-Space Imaging of Ultra-Thin Electron Liquids in δ-Doped Silicon.
    Constantinou P; Stock TJZ; Crane E; Kölker A; van Loon M; Li J; Fearn S; Bornemann H; D'Anna N; Fisher AJ; Strocov VN; Aeppli G; Curson NJ; Schofield SR
    Adv Sci (Weinh); 2023 Sep; 10(27):e2302101. PubMed ID: 37469010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.
    Keizer JG; McKibbin SR; Simmons MY
    ACS Nano; 2015 Jul; 9(7):7080-4. PubMed ID: 26083628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes.
    Chen F; Ramayya EB; Euaruksakul C; Himpsel FJ; Celler GK; Ding B; Knezevic I; Lagally MG
    ACS Nano; 2010 Apr; 4(4):2466-74. PubMed ID: 20302337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the surface-to-bulk progression in the normal-state electronic structure of Sr(2)RuO(4) by angle-resolved photoemission and density functional theory.
    Veenstra CN; Zhu ZH; Ludbrook B; Capsoni M; Levy G; Nicolaou A; Rosen JA; Comin R; Kittaka S; Maeno Y; Elfimov IS; Damascelli A
    Phys Rev Lett; 2013 Mar; 110(9):097004. PubMed ID: 23496740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-phonon coupling in quantum-well states of the Pb/Si(1 1 1) system.
    Ligges M; Sandhofer M; Sklyadneva I; Heid R; Bohnen KP; Freutel S; Rettig L; Zhou P; Echenique PM; Chulkov EV; Bovensiepen U
    J Phys Condens Matter; 2014 Sep; 26(35):352001. PubMed ID: 25115690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus δ-doped silicon: mixed-atom pseudopotentials and dopant disorder effects.
    Carter DJ; Marks NA; Warschkow O; McKenzie DR
    Nanotechnology; 2011 Feb; 22(6):065701. PubMed ID: 21212477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The changing colors of a quantum-confined topological insulator.
    Vargas A; Basak S; Liu F; Wang B; Panaitescu E; Lin H; Markiewicz R; Bansil A; Kar S
    ACS Nano; 2014 Feb; 8(2):1222-30. PubMed ID: 24428365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic modeling of metallic nanowires in silicon.
    Ryu H; Lee S; Weber B; Mahapatra S; Hollenberg LC; Simmons MY; Klimeck G
    Nanoscale; 2013 Sep; 5(18):8666-74. PubMed ID: 23897026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional electron-hole liquid in single Si quantum wells with large electronic and dielectric confinement.
    Pauc N; Calvo V; Eymery J; Fournel F; Magnea N
    Phys Rev Lett; 2004 Jun; 92(23):236802. PubMed ID: 15245183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO
    König D; Frentzen M; Wilck N; Berghoff B; Píš I; Nappini S; Bondino F; Müller M; Gonzalez S; Di Santo G; Petaccia L; Mayer J; Smith S; Knoch J
    ACS Appl Mater Interfaces; 2021 May; 13(17):20479-20488. PubMed ID: 33878265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersive Electronic States of the π-Orbitals Stacking in Single Molecular Lines on the Si(001)-(2×1)-H Surface.
    Kamakura S; Jung J; Minato T; Kim Y; Hossain MZ; Kato HS; Munakata T; Kawai M
    J Phys Chem Lett; 2013 Apr; 4(7):1199-204. PubMed ID: 26282042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.