BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1146 related articles for article (PubMed ID: 25243611)

  • 1. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning.
    Ying SC; Kocar BD; Griffis SD; Fendorf S
    Environ Sci Technol; 2011 Jul; 45(13):5572-9. PubMed ID: 21648436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.
    Wu Y; Li W; Sparks DL
    Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides.
    Khatiwada R; Olivares C; Abrell L; Root RA; Sierra-Alvarez R; Field JA; Chorover J
    Chemosphere; 2018 Jun; 201():790-798. PubMed ID: 29550573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron.
    Ying C; Liu C; Zhang F; Zheng L; Wang X; Yin H; Tan W; Feng X; Lanson B
    Water Res; 2023 Sep; 243():120345. PubMed ID: 37516074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting effects of dissimilatory iron (III) and arsenic (V) reduction on arsenic retention and transport.
    Kocar BD; Herbel MJ; Tufano KJ; Fendorf S
    Environ Sci Technol; 2006 Nov; 40(21):6715-21. PubMed ID: 17144301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr)oxides systems.
    You Y; Liang Y; Peng S; Lan S; Lu G; Feng X; Shi Z
    Chemosphere; 2020 Apr; 244():125517. PubMed ID: 32050332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).
    Lan S; Ying H; Wang X; Liu F; Tan W; Huang Q; Zhang J; Feng X
    Water Res; 2018 Jan; 128():92-101. PubMed ID: 29091808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic release from arsenic-bearing Fe-Mn binary oxide: effects of E(h) condition.
    Xu W; Wang H; Liu R; Zhao X; Qu J
    Chemosphere; 2011 May; 83(7):1020-7. PubMed ID: 21354590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.
    Zhang G; Liu F; Liu H; Qu J; Liu R
    Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.
    Bai Y; Yang T; Liang J; Qu J
    Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions.
    Liu X; Cai X; Wang P; Yin N; Fan C; Chang X; Huang X; Du X; Wang S; Cui Y
    J Hazard Mater; 2023 Mar; 445():130602. PubMed ID: 37055999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
    Wu Y; Li W; Sparks DL
    J Colloid Interface Sci; 2015 Nov; 457():319-28. PubMed ID: 26196715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates.
    Muehe EM; Scheer L; Daus B; Kappler A
    Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.