These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25243672)

  • 1. Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: finite elements analysis vs. X-ray tomography imaging.
    Laurent CP; Latil P; Durville D; Rahouadj R; Geindreau C; Orgéas L; Ganghoffer JF
    J Mech Behav Biomed Mater; 2014 Dec; 40():222-233. PubMed ID: 25243672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multilayer braided scaffold for Anterior Cruciate Ligament: mechanical modeling at the fiber scale.
    Laurent CP; Durville D; Mainard D; Ganghoffer JF; Rahouadj R
    J Mech Behav Biomed Mater; 2012 Aug; 12():184-96. PubMed ID: 22836026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological characterization of a novel scaffold for anterior cruciate ligament tissue engineering.
    Laurent CP; Ganghoffer JF; Babin J; Six JL; Wang X; Rahouadj R
    J Biomech Eng; 2011 Jun; 133(6):065001. PubMed ID: 21744936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the finite element model accuracy of tissue engineering scaffolds produced by selective laser sintering.
    Lohfeld S; Cahill S; Doyle H; McHugh PE
    J Mater Sci Mater Med; 2015 Jan; 26(1):5376. PubMed ID: 25578716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.
    Bawolin NK; Dolovich AT; Chen DX; Zhang CW
    J Biomech Eng; 2015 Aug; 137(8):081004. PubMed ID: 25902011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-based composite scaffolds for tissue engineering.
    Gloria A; De Santis R; Ambrosio L
    J Appl Biomater Biomech; 2010; 8(2):57-67. PubMed ID: 20740467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds.
    Charles-Harris M; del Valle S; Hentges E; Bleuet P; Lacroix D; Planell JA
    Biomaterials; 2007 Oct; 28(30):4429-38. PubMed ID: 17644172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design.
    Freeman JW; Woods MD; Laurencin CT
    J Biomech; 2007; 40(9):2029-36. PubMed ID: 17097666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation.
    Almeida HA; Bártolo PJ
    Med Eng Phys; 2014 Aug; 36(8):1033-40. PubMed ID: 24935150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.
    Silva M; Ferreira FN; Alves NM; Paiva MC
    J Nanobiotechnology; 2020 Jan; 18(1):23. PubMed ID: 32000800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.
    Hayami JW; Surrao DC; Waldman SD; Amsden BG
    J Biomed Mater Res A; 2010 Mar; 92(4):1407-20. PubMed ID: 19353565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray physics-based CT-to-composition conversion applied to a tissue engineering scaffold, enabling multiscale simulation of its elastic behavior.
    Szlazak K; Vass V; Hasslinger P; Jaroszewicz J; Dejaco A; Idaszek J; Scheiner S; Hellmich C; Swieszkowski W
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():389-396. PubMed ID: 30573263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration.
    Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC
    Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering.
    Sahoo S; Ouyang H; Goh JC; Tay TE; Toh SL
    Tissue Eng; 2006 Jan; 12(1):91-9. PubMed ID: 16499446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering.
    Jean A; Engelmayr GC
    J Biomech; 2010 Nov; 43(15):3035-43. PubMed ID: 20673666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and simulated imaging of pseudo-scaffolds to aid characterisation by X-ray micro CT.
    Morris DE; Mather ML; Crowe JA
    Biomaterials; 2009 Sep; 30(25):4233-46. PubMed ID: 19473700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.
    Sahoo S; Toh SL; Goh JC
    Biomaterials; 2010 Apr; 31(11):2990-8. PubMed ID: 20089300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.