These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25244134)

  • 1. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.
    Ardau C; Lattanzi P; Peretti R; Zucca A
    Environ Technol; 2014; 35(21-24):3060-73. PubMed ID: 25244134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud.
    Zijlstra JJ; Dessì R; Peretti R; Zucca A
    Water Environ Res; 2010 Apr; 82(4):319-27. PubMed ID: 20432649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden values in bauxite residue (red mud): recovery of metals.
    Liu Y; Naidu R
    Waste Manag; 2014 Dec; 34(12):2662-73. PubMed ID: 25269817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage.
    Wilkin RT; McNeil MS
    Chemosphere; 2003 Nov; 53(7):715-25. PubMed ID: 13129511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.
    Jacukowicz-Sobala I; Ociński D; Kociołek-Balawejder E
    Waste Manag Res; 2015 Jul; 33(7):612-29. PubMed ID: 26060197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of red mud derived from a combined Bayer Process and bauxite calcination method.
    Liu Y; Lin C; Wu Y
    J Hazard Mater; 2007 Jul; 146(1-2):255-61. PubMed ID: 17208370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micron-size metal-binding hydrogel particles improve germination and radicle elongation of Australian metallophyte grasses in mine waste rock and tailings.
    Guterres J; Rossato L; Pudmenzky A; Doley D; Whittaker M; Schmidt S
    J Hazard Mater; 2013 Mar; 248-249():442-50. PubMed ID: 23416872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disposal of water treatment wastes containing arsenic - a review.
    Sullivan C; Tyrer M; Cheeseman CR; Graham NJ
    Sci Total Environ; 2010 Mar; 408(8):1770-8. PubMed ID: 20153878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health.
    Hamilton EI
    Sci Total Environ; 2000 Apr; 249(1-3):171-221. PubMed ID: 10813455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y
    Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.
    Rai S; Wasewar KL; Lataye DH; Mishra RS; Puttewar SP; Chaddha MJ; Mahindiran P; Mukhopadhyay J
    Waste Manag Res; 2012 Sep; 30(9):922-30. PubMed ID: 22751850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.
    Ahn JS; Chon CM; Moon HS; Kim KW
    Water Res; 2003 May; 37(10):2478-88. PubMed ID: 12727260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron oxide - clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas.
    Gomez-Gonzalez MA; Villalobos M; Marco JF; Garcia-Guinea J; Bolea E; Laborda F; Garrido F
    Chemosphere; 2018 Apr; 197():759-767. PubMed ID: 29407840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.
    Pérez-López R; Nieto JM; de Almodóvar GR
    Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite.
    Neupane G; Donahoe RJ
    J Hazard Mater; 2012 Aug; 229-230():201-8. PubMed ID: 22721834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.
    Labastida I; Armienta MA; Lara-Castro RH; Aguayo A; Cruz O; Ceniceros N
    J Hazard Mater; 2013 Nov; 262():1187-95. PubMed ID: 22819958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching of metals from fresh and sintered red mud.
    Ghosh I; Guha S; Balasubramaniam R; Kumar AV
    J Hazard Mater; 2011 Jan; 185(2-3):662-8. PubMed ID: 21035262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation: a novel approach for utilization of iron-ore wastes.
    Mohanty M; Dhal NK; Patra P; Das B; Reddy PS
    Rev Environ Contam Toxicol; 2010; 206():29-47. PubMed ID: 20652667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of arsenic and metals from groundwater impacted by mine waste using zero-valent iron and organic carbon: Laboratory column experiments.
    Angai JU; Ptacek CJ; Pakostova E; Bain JG; Verbuyst BR; Blowes DW
    J Hazard Mater; 2022 Feb; 424(Pt A):127295. PubMed ID: 34601408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.