These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25244608)

  • 1. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.
    Senesi AJ; Eichelsdoerfer DJ; Brown KA; Lee B; Auyeung E; Choi CH; Macfarlane RJ; Young KL; Mirkin CA
    Adv Mater; 2014 Nov; 26(42):7235-40. PubMed ID: 25244608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular and Chemically Responsive Oligonucleotide "Bonds" in Nanoparticle Superlattices.
    Barnaby SN; Thaner RV; Ross MB; Brown KA; Schatz GC; Mirkin CA
    J Am Chem Soc; 2015 Oct; 137(42):13566-71. PubMed ID: 26465067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of the DNA "bond" in programmable nanoparticle crystallization.
    Macfarlane RJ; Thaner RV; Brown KA; Zhang J; Lee B; Nguyen ST; Mirkin CA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):14995-5000. PubMed ID: 25298535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle superlattice engineering with DNA.
    Macfarlane RJ; Lee B; Jones MR; Harris N; Schatz GC; Mirkin CA
    Science; 2011 Oct; 334(6053):204-8. PubMed ID: 21998382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Blaber MG; Mirkin CA; Schatz GC
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10292-7. PubMed ID: 26240356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.
    Sun L; Lin H; Park DJ; Bourgeois MR; Ross MB; Ku JC; Schatz GC; Mirkin CA
    Nano Lett; 2017 Apr; 17(4):2313-2318. PubMed ID: 28358518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Significance of Multivalent Bonding Motifs and "Bond Order" in DNA-Directed Nanoparticle Crystallization.
    Thaner RV; Eryazici I; Macfarlane RJ; Brown KA; Lee B; Nguyen ST; Mirkin CA
    J Am Chem Soc; 2016 May; 138(19):6119-22. PubMed ID: 27148838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach.
    Auyeung E; Cutler JI; Macfarlane RJ; Jones MR; Wu J; Liu G; Zhang K; Osberg KD; Mirkin CA
    Nat Nanotechnol; 2011 Dec; 7(1):24-8. PubMed ID: 22157725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The third dimension: DNA-driven formation of nanoparticle crystals.
    Richert C; Meng M; Müller K; Heimann K
    Small; 2008 Aug; 4(8):1040-2. PubMed ID: 18666171
    [No Abstract]   [Full Text] [Related]  

  • 10. Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices.
    De Fazio AF; El-Sagheer AH; Kahn JS; Nandhakumar I; Burton MR; Brown T; Muskens OL; Gang O; Kanaras AG
    ACS Nano; 2019 May; 13(5):5771-5777. PubMed ID: 30958671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-nanoparticle superlattices formed from anisotropic building blocks.
    Jones MR; Macfarlane RJ; Lee B; Zhang J; Young KL; Senesi AJ; Mirkin CA
    Nat Mater; 2010 Nov; 9(11):913-7. PubMed ID: 20890281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-crystal Winterbottom constructions of nanoparticle superlattices.
    Lewis DJ; Zornberg LZ; Carter DJD; Macfarlane RJ
    Nat Mater; 2020 Jul; 19(7):719-724. PubMed ID: 32203459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling.
    Basu S; Ghosh SK; Kundu S; Panigrahi S; Praharaj S; Pande S; Jana S; Pal T
    J Colloid Interface Sci; 2007 Sep; 313(2):724-34. PubMed ID: 17540397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions.
    Zhang Y; Pal S; Srinivasan B; Vo T; Kumar S; Gang O
    Nat Mater; 2015 Aug; 14(8):840-7. PubMed ID: 26006003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines.
    Li D; Wieckowska A; Willner I
    Angew Chem Int Ed Engl; 2008; 47(21):3927-31. PubMed ID: 18404745
    [No Abstract]   [Full Text] [Related]  

  • 17. DNA-mediated engineering of multicomponent enzyme crystals.
    Brodin JD; Auyeung E; Mirkin CA
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4564-9. PubMed ID: 25831510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-mediated nanoparticle crystallization into Wulff polyhedra.
    Auyeung E; Li TI; Senesi AJ; Schmucker AL; Pals BC; de la Cruz MO; Mirkin CA
    Nature; 2014 Jan; 505(7481):73-7. PubMed ID: 24284632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed assembly of peptide-functionalized gold nanoparticles on DNA templates.
    Coomber D; Bartczak D; Gerrard SR; Tyas S; Kanaras AG; Stulz E
    Langmuir; 2010 Sep; 26(17):13760-2. PubMed ID: 20672816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Responsive Colloidal Crystals Engineered with DNA.
    Zhu J; Lin H; Kim Y; Yang M; Skakuj K; Du JS; Lee B; Schatz GC; Van Duyne RP; Mirkin CA
    Adv Mater; 2020 Feb; 32(8):e1906600. PubMed ID: 31944429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.