These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25244844)
1. [Structural changes of aged biochar and the influence on phenanthrene adsorption]. Tang W; Guo Y; Wu JG; Huang ZQ; Dai JY Huan Jing Ke Xue; 2014 Jul; 35(7):2604-11. PubMed ID: 25244844 [TBL] [Abstract][Full Text] [Related]
2. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene. Ren X; Wang F; Zhang P; Guo J; Sun H Chemosphere; 2018 Sep; 206():51-58. PubMed ID: 29730565 [TBL] [Abstract][Full Text] [Related]
3. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Zielińska A; Oleszczuk P Environ Sci Pollut Res Int; 2016 Nov; 23(21):21822-21832. PubMed ID: 27523043 [TBL] [Abstract][Full Text] [Related]
4. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041 [TBL] [Abstract][Full Text] [Related]
5. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4(+)), nitrate (NO3(-)), and phosphate (PO4(3-)). Wang Z; Guo H; Shen F; Yang G; Zhang Y; Zeng Y; Wang L; Xiao H; Deng S Chemosphere; 2015 Jan; 119():646-653. PubMed ID: 25150468 [TBL] [Abstract][Full Text] [Related]
6. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875 [TBL] [Abstract][Full Text] [Related]
7. Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Park J; Hung I; Gan Z; Rojas OJ; Lim KH; Park S Bioresour Technol; 2013 Dec; 149():383-9. PubMed ID: 24128401 [TBL] [Abstract][Full Text] [Related]
8. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds. Tao J; Wu W; Lin D; Yang K Environ Pollut; 2024 Apr; 346():123583. PubMed ID: 38365081 [TBL] [Abstract][Full Text] [Related]
9. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential. De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256 [TBL] [Abstract][Full Text] [Related]
10. Characterization and 2D structural model of corn straw and poplar leaf biochars. Zhao N; Lv Y; Yang X; Huang F; Yang J Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898 [TBL] [Abstract][Full Text] [Related]
11. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures]. Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes. Shang G; Li Q; Liu L; Chen P; Huang X J Air Waste Manag Assoc; 2016 Jan; 66(1):8-16. PubMed ID: 26447857 [TBL] [Abstract][Full Text] [Related]
13. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Zhang H; Lin K; Wang H; Gan J Environ Pollut; 2010 Sep; 158(9):2821-5. PubMed ID: 20638165 [TBL] [Abstract][Full Text] [Related]
14. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
16. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars. Yang G; Wu L; Xian Q; Shen F; Wu J; Zhang Y PLoS One; 2016; 11(5):e0154562. PubMed ID: 27144922 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Srinivasan P; Sarmah AK Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589 [TBL] [Abstract][Full Text] [Related]
18. Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Yin Q; Zhang B; Wang R; Zhao Z Environ Sci Pollut Res Int; 2018 Feb; 25(5):4320-4329. PubMed ID: 29181752 [TBL] [Abstract][Full Text] [Related]
19. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics. Chang Z; Tian L; Wu M; Dong X; Peng J; Pan B Environ Pollut; 2018 Jun; 237():541-548. PubMed ID: 29524876 [TBL] [Abstract][Full Text] [Related]