These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 25245009)

  • 21. Electrochemical co-deposition of conductive polymer-silica hybrid thin films.
    Raveh M; Liu L; Mandler D
    Phys Chem Chem Phys; 2013 Jul; 15(26):10876-84. PubMed ID: 23698356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled electrochemical synthesis of polypyrrole nanoparticle thin film and its redox transition to a highly conductive and stable polypyrrole variant.
    West R; Zeng X
    Langmuir; 2008 Oct; 24(19):11076-81. PubMed ID: 18729336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance.
    Kim MK; Lee JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32918-32924. PubMed ID: 27934194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of oxidizable electrode material on resistive switching characteristics of ZnO(x)S(1-x) films.
    Cho K; Park S; Chung I; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8187-90. PubMed ID: 25958497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.
    Cho SH; Park SM
    J Phys Chem B; 2006 Dec; 110(51):25656-64. PubMed ID: 17181203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistive switching behavior in gelatin thin films for nonvolatile memory application.
    Chang YC; Wang YH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5413-21. PubMed ID: 24679989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism underlying silicon oxide based resistive random-access memory (ReRAM).
    Chen YL; Ho MS; Lee WJ; Chung PF; Balraj B; Sivakumar C
    Nanotechnology; 2020 Apr; 31(14):145709. PubMed ID: 31846950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Annealing Effect of Al2O3 Tunnel Barriers in HfO2-Based ReRAM Devices on Nonlinear Resistive Switching Characteristics.
    Park S; Cho K; Jung J; Kim S
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7569-72. PubMed ID: 26726373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly.
    Frascaroli J; Brivio S; Ferrarese Lupi F; Seguini G; Boarino L; Perego M; Spiga S
    ACS Nano; 2015 Mar; 9(3):2518-29. PubMed ID: 25743480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Configurable switching behavior in polymer-based resistive memories by adopting unique electrode/electrolyte arrangement.
    Krishnan K; Tauquir SM; Vijayaraghavan S; Mohan R
    RSC Adv; 2021 Jul; 11(38):23400-23408. PubMed ID: 35479807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.
    Han Y; Cho K; Park S; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8191-5. PubMed ID: 25958498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic and interfacial effect of electrode metals on the resistive switching behaviors of zinc oxide films.
    Xue WH; Xiao W; Shang J; Chen XX; Zhu XJ; Pan L; Tan HW; Zhang WB; Ji ZH; Liu G; Xu XH; Ding J; Li RW
    Nanotechnology; 2014 Oct; 25(42):425204. PubMed ID: 25274278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models.
    Nakamura H; Asai Y
    Phys Chem Chem Phys; 2016 Apr; 18(13):8820-6. PubMed ID: 26975565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reliable control of filament formation in resistive memories by self-assembled nanoinsulators derived from a block copolymer.
    You BK; Park WI; Kim JM; Park KI; Seo HK; Lee JY; Jung YS; Lee KJ
    ACS Nano; 2014 Sep; 8(9):9492-502. PubMed ID: 25192434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose.
    Mihranyan A; Nyholm L; Bennett AE; Strømme M
    J Phys Chem B; 2008 Oct; 112(39):12249-55. PubMed ID: 18774844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible resistive random access memory devices by using NiO
    Lee K; Park JW; Tchoe Y; Yoon J; Chung K; Yoon H; Lee S; Yoon C; Ho Park B; Yi GC
    Nanotechnology; 2017 May; 28(20):205202. PubMed ID: 28303797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Quality Single-Crystalline
    Sivakumar C; Tsai GH; Chung PF; Balraj B; Lin YF; Ho MS
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.
    Lee C; Kim I; Choi W; Shin H; Cho J
    Langmuir; 2009 Apr; 25(8):4274-8. PubMed ID: 19317425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles.
    Chen J; Xu J; Wang K; Qian X; Sun R
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15641-8. PubMed ID: 26135618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bipolar resistive switching behavior of an amorphous Ge₂Sb₂Te₅ thin films with a Te layer.
    Yoo S; Eom T; Gwon T; Hwang CS
    Nanoscale; 2015 Apr; 7(14):6340-7. PubMed ID: 25785363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.