These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25245110)

  • 1. Reversible hydrophobic to hydrophilic transition in graphene via water splitting induced by UV irradiation.
    Xu Z; Ao Z; Chu D; Younis A; Li CM; Li S
    Sci Rep; 2014 Sep; 4():6450. PubMed ID: 25245110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of the mechanism of wettability transition of defective graphene.
    Błoński P; Otyepka M
    Nanotechnology; 2017 Feb; 28(6):064003. PubMed ID: 28071594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles study on the hydrophilic and conductive graphene doped with Al atoms.
    Jiang QG; Ao ZM; Jiang Q
    Phys Chem Chem Phys; 2013 Jul; 15(26):10859-65. PubMed ID: 23698288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the Interactions at the Graphene-Substrate Boundary on Graphene Sensitivity to UV Irradiation.
    Nowak D; Clapa M; Kula P; Sochacki M; Stonio B; Galazka M; Pelka M; Kuten D; Niedzielski P
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Wettability of Graphene through Nondestructive Hydrogenation and Wettability-Based Patterning for Bioapplications.
    Son J; Lee JY; Han N; Cha J; Choi J; Kwon J; Nam S; Yoo KH; Lee GH; Hong J
    Nano Lett; 2020 Aug; 20(8):5625-5631. PubMed ID: 32275158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction.
    Aslam S; Sagar RUR; Kumar H; Zhang G; Nosheen F; Namvari M; Mahmood N; Zhang M; Qiu Y
    Chemosphere; 2020 Apr; 245():125607. PubMed ID: 31884174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Fabrication of Janus Fabric with Asymmetric Wettability for Water Purification and Hydrophobic/Hydrophilic Patterned Surfaces for Fog Harvesting.
    Zhu R; Liu M; Hou Y; Zhang L; Li M; Wang D; Wang D; Fu S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50113-50125. PubMed ID: 33085450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning Graphene Films by H
    Su S; Li H; Huang J; Zhang Z; Liang C; Jiang W; Deng A; Liu K; Shi Z; Qian D; Tao H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55382-55389. PubMed ID: 33226760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Hydrophobic-Hydrophilic Transition of Ionic Liquids Driven by Carbon Dioxide.
    Xiong D; Cui G; Wang J; Wang H; Li Z; Yao K; Zhang S
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7265-9. PubMed ID: 25925191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure.
    Yang Z; Liu X; Tian Y
    J Colloid Interface Sci; 2019 Jan; 533():268-277. PubMed ID: 30170278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of ambient temperature, surface fluctuation and charge density on wettability properties of graphene film.
    Wang W; Zhang H; Li S; Zhan Y
    Nanotechnology; 2016 Feb; 27(7):075707. PubMed ID: 26783182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.
    Liu N; Moumanis K; Dubowski JJ
    J Vis Exp; 2015 Nov; (105):e52720. PubMed ID: 26575362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity.
    Caputo G; Cingolani R; Cozzoli PD; Athanassiou A
    Phys Chem Chem Phys; 2009 May; 11(19):3692-700. PubMed ID: 19421480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: exploration of dynamic wettability.
    Leung KC; Xuan S; Lo CM
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2005-12. PubMed ID: 20355826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and reactivity of water at biomaterial surfaces.
    Vogler EA
    Adv Colloid Interface Sci; 1998 Feb; 74():69-117. PubMed ID: 9561719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved ultrasonic degradation of hydrophilic and hydrophobic aldehydes in water by combined use of atomization and UV irradiation onto the mist surface.
    Ono Y; Sekiguchi K; Sankoda K; Nii S; Namiki N
    Ultrason Sonochem; 2020 Jan; 60():104766. PubMed ID: 31539724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional material confined water.
    Li Q; Song J; Besenbacher F; Dong M
    Acc Chem Res; 2015 Jan; 48(1):119-27. PubMed ID: 25539031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wettability of graphene: from influencing factors and reversible conversions to potential applications.
    Feng J; Guo Z
    Nanoscale Horiz; 2019 Mar; 4(2):339-364. PubMed ID: 32254088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.