These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 25245123)
1. Understanding quantum confinement in nanowires: basics, applications and possible laws. Mohammad SN J Phys Condens Matter; 2014 Oct; 26(42):423202. PubMed ID: 25245123 [TBL] [Abstract][Full Text] [Related]
2. Quantum-confined nanowires as vehicles for enhanced electrical transport. Mohammad SN Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637 [TBL] [Abstract][Full Text] [Related]
3. Surface passivation and orientation dependence in the electronic properties of silicon nanowires. Zhuo K; Chou MY J Phys Condens Matter; 2013 Apr; 25(14):145501. PubMed ID: 23478205 [TBL] [Abstract][Full Text] [Related]
4. A Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires. Kim J; Lee JH; Hong KH J Phys Chem Lett; 2013 Jan; 4(1):121-6. PubMed ID: 26291223 [TBL] [Abstract][Full Text] [Related]
5. Orientation effects in morphology and electronic properties of anatase TiO(2) one-dimensional nanostructures. I. Nanowires. Migas DB; Filonov AB; Borisenko VE; Skorodumova NV Phys Chem Chem Phys; 2014 May; 16(20):9479-89. PubMed ID: 24724155 [TBL] [Abstract][Full Text] [Related]
6. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
7. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Dan Y; Seo K; Takei K; Meza JH; Javey A; Crozier KB Nano Lett; 2011 Jun; 11(6):2527-32. PubMed ID: 21598980 [TBL] [Abstract][Full Text] [Related]
9. A theoretical study of electronic and optical properties of SiC nanowires and their quantum confinement effects. Laref A; Alshammari N; Laref S; Luo SJ Dalton Trans; 2014 Apr; 43(14):5505-15. PubMed ID: 24535574 [TBL] [Abstract][Full Text] [Related]
10. Photonic nanowires: from subwavelength waveguides to optical sensors. Guo X; Ying Y; Tong L Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258 [TBL] [Abstract][Full Text] [Related]
11. Silicon nanowire band gap modification. Nolan M; O'Callaghan S; Fagas G; Greer JC; Frauenheim T Nano Lett; 2007 Jan; 7(1):34-8. PubMed ID: 17212436 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires. Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454 [TBL] [Abstract][Full Text] [Related]
13. Quantum confinement and electronic properties of silicon nanowires. Zhao X; Wei CM; Yang L; Chou MY Phys Rev Lett; 2004 Jun; 92(23):236805. PubMed ID: 15245186 [TBL] [Abstract][Full Text] [Related]
15. First-principles study of polymer-passivated silicon nanowire outer-shell defects. Wei L; Li F; Pang S; Wang Y; Guo J; Chen J Phys Chem Chem Phys; 2022 May; 24(18):11169-11174. PubMed ID: 35476044 [TBL] [Abstract][Full Text] [Related]
16. The effects of oxygen on the surface passivation of InP nanowires. Dionízio Moreira M; Venezuela P; Schmidt TM Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696 [TBL] [Abstract][Full Text] [Related]