BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25245219)

  • 1. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.
    Wang L; Wu Z; Yang C; Zheng J; Bach R; Muccigrosso D; Billiar K; Maehara A; Mintz GS; Tang D
    Ann Biomed Eng; 2015 Jan; 43(1):107-21. PubMed ID: 25245219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Zheng J; Bach R; Billiar KL; Mintz GS
    J Biomech; 2018 Feb; 68():43-50. PubMed ID: 29274686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.
    Fan R; Tang D; Yang C; Zheng J; Bach R; Wang L; Muccigrosso D; Billiar K; Zhu J; Ma G; Maehara A; Mintz GS
    Biomed Eng Online; 2014 Mar; 13(1):32. PubMed ID: 24669780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.
    Yang C; Canton G; Yuan C; Ferguson M; Hatsukami TS; Tang D
    Biomed Eng Online; 2011 Jul; 10():61. PubMed ID: 21771293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study.
    Guo X; Maehara A; Matsumura M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Biomed Eng Online; 2021 Apr; 20(1):34. PubMed ID: 33823858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations.
    Wang Q; Tang D; Wang L; Meahara A; Molony D; Samady H; Zheng J; Mintz GS; Stone GW; Giddens DP
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1383-1397. PubMed ID: 33759037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.
    Wang L; Tang D; Maehara A; Molony D; Zheng J; Samady H; Wu Z; Lu W; Zhu J; Ma G; Giddens DP; Stone GW; Mintz GS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1269-1280. PubMed ID: 30937650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between carotid plaque progression and mechanical stresses change sign over time: a patient follow up study using MRI and 3D FSI models.
    Tang D; Yang C; Canton G; Wu Z; Hatsukami T; Yuan C
    Biomed Eng Online; 2013 Oct; 12():105. PubMed ID: 24125580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining morphological and biomechanical factors for optimal carotid plaque progression prediction: An MRI-based follow-up study using 3D thin-layer models.
    Wang Q; Tang D; Wang L; Canton G; Wu Z; Hatsukami TS; Billiar KL; Yuan C
    Int J Cardiol; 2019 Oct; 293():266-271. PubMed ID: 31301863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability.
    Corban MT; Eshtehardi P; Suo J; McDaniel MC; Timmins LH; Rassoul-Arzrumly E; Maynard C; Mekonnen G; King S; Quyyumi AA; Giddens DP; Samady H
    Atherosclerosis; 2014 Feb; 232(2):271-6. PubMed ID: 24468138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study.
    Wang L; Zheng J; Maehara A; Yang C; Billiar KL; Wu Z; Bach R; Muccigrosso D; Mintz GS; Tang D
    PLoS Comput Biol; 2015 Dec; 11(12):e1004652. PubMed ID: 26650721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models.
    Tang D; Yang C; Mondal S; Liu F; Canton G; Hatsukami TS; Yuan C
    J Biomech; 2008; 41(4):727-36. PubMed ID: 18191138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced human carotid plaque progression correlates positively with flow shear stress using follow-up scan data: an in vivo MRI multi-patient 3D FSI study.
    Yang C; Canton G; Yuan C; Ferguson M; Hatsukami TS; Tang D
    J Biomech; 2010 Sep; 43(13):2530-8. PubMed ID: 20570268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multimodality Image-Based Fluid-Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Matsumura M; Mintz GS; Maehara A; Wang L; Tang D
    J Biomech Eng; 2019 Sep; 141(9):0910031-9. PubMed ID: 31141591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Mintz GS; Maehara A; Wang L; Pei X; Li ZY; Tang D
    J Biomech Eng; 2018 Apr; 140(4):0410051-04100512. PubMed ID: 29059332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Matsumura M; Zheng J; Bach R; Billiar KL; Stone GW; Mintz GS
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1267-1276. PubMed ID: 32696674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries.
    Molony DS; Timmins LH; Hung OY; Rasoul-Arzrumly E; Samady H; Giddens DP
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S2. PubMed ID: 25603192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond.
    Wu Z; Yang C; Tang D
    J Biomech Eng; 2011 Jun; 133(6):064503. PubMed ID: 21744932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.