These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25245221)

  • 41. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up.
    Eggenberger P; Theill N; Holenstein S; Schumacher V; de Bruin ED
    Clin Interv Aging; 2015; 10():1711-32. PubMed ID: 26604719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuromuscular responses differ between slip-induced falls and recoveries in older adults.
    Sawers A; Pai YC; Bhatt T; Ting LH
    J Neurophysiol; 2017 Feb; 117(2):509-522. PubMed ID: 27832608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Does stroke-induced sensorimotor impairment and perturbation intensity affect gait-slip outcomes?
    Dusane S; Gangwani R; Patel P; Bhatt T
    J Biomech; 2021 Mar; 118():110255. PubMed ID: 33581438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Do Patients With Parkinson's Disease With Freezing of Gait Respond Differently Than Those Without to Treadmill Training Augmented by Virtual Reality?
    Bekkers EMJ; Mirelman A; Alcock L; Rochester L; Nieuwhof F; Bloem BR; Pelosin E; Avanzino L; Cereatti A; Della Croce U; Hausdorff JM; Nieuwboer A
    Neurorehabil Neural Repair; 2020 May; 34(5):440-449. PubMed ID: 32202203
    [No Abstract]   [Full Text] [Related]  

  • 45. The effects of 10% front load carriage on the likelihood of slips and falls.
    Kim S; Lockhart TE
    Ind Health; 2008 Jan; 46(1):32-9. PubMed ID: 18270448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The retention of fall-resisting behavior derived from treadmill slip-perturbation training in community-dwelling older adults.
    Liu X; Bhatt T; Wang Y; Wang S; Lee A; Pai YC
    Geroscience; 2021 Apr; 43(2):913-926. PubMed ID: 32978705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inoculation against falls: rapid adaptation by young and older adults to slips during daily activities.
    Pai YC; Bhatt T; Wang E; Espy D; Pavol MJ
    Arch Phys Med Rehabil; 2010 Mar; 91(3):452-9. PubMed ID: 20298839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perturbation exercises during treadmill walking improve pelvic and trunk motion in older adults-A randomized control trial.
    Gimmon Y; Riemer R; Kurz I; Shapiro A; Debbi R; Melzer I
    Arch Gerontol Geriatr; 2018; 75():132-138. PubMed ID: 29304507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuromuscular mechanisms of motor adaptation to repeated gait-slip perturbations in older adults.
    Wang S; Pai YC; Bhatt T
    Sci Rep; 2022 Nov; 12(1):19851. PubMed ID: 36400866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Carter H; Toson B; Lord SR
    PLoS One; 2018; 13(9):e0202913. PubMed ID: 30226887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Falls resulting from a laboratory-induced slip occur at a higher rate among individuals who are obese.
    Allin LJ; Wu X; Nussbaum MA; Madigan ML
    J Biomech; 2016 Mar; 49(5):678-683. PubMed ID: 26897650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of load carrying on required coefficient of friction.
    Seo JS; Kim S
    Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can observational training substitute motor training in preventing backward balance loss after an unexpected slip during walking?
    Bhatt T; Pai YC
    J Neurophysiol; 2008 Feb; 99(2):843-52. PubMed ID: 18003882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait.
    Rasmussen CM; Hunt NH
    J Neuroeng Rehabil; 2019 Oct; 16(1):118. PubMed ID: 31623680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age-related slip avoidance strategy while walking over a known slippery floor surface.
    Lockhart TE; Spaulding JM; Park SH
    Gait Posture; 2007 Jun; 26(1):142-9. PubMed ID: 17023162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls.
    Lockhart TE; Kim S
    Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial.
    de Rooij IJM; van de Port IGL; Visser-Meily JMA; Meijer JG
    Trials; 2019 Jan; 20(1):89. PubMed ID: 30696491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temporal changes in the required shoe-floor friction when walking following an induced slip.
    Beringer DN; Nussbaum MA; Madigan ML
    PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Control Trial.
    Liao YY; Chen IH; Lin YJ; Chen Y; Hsu WC
    Front Aging Neurosci; 2019; 11():162. PubMed ID: 31379553
    [No Abstract]   [Full Text] [Related]  

  • 60. Walking in an immersive virtual reality.
    Menegoni F; Albani G; Bigoni M; Priano L; Trotti C; Galli M; Mauro A
    Stud Health Technol Inform; 2009; 144():72-6. PubMed ID: 19592734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.