These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 25245368)
21. Computational design of proteins stereochemically optimized in size, stability, and folding speed. Joshi S; Rana S; Wangikar P; Durani S Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262 [TBL] [Abstract][Full Text] [Related]
22. Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. Li L; Mirny LA; Shakhnovich EI Nat Struct Biol; 2000 Apr; 7(4):336-42. PubMed ID: 10742180 [TBL] [Abstract][Full Text] [Related]
23. Folding of elongated proteins: conventional or anomalous? Hagai T; Levy Y J Am Chem Soc; 2008 Oct; 130(43):14253-62. PubMed ID: 18834131 [TBL] [Abstract][Full Text] [Related]
24. Molecular mechanisms for cooperative folding of proteins. Hao MH; Scheraga HA J Mol Biol; 1998 Apr; 277(4):973-83. PubMed ID: 9545385 [TBL] [Abstract][Full Text] [Related]
25. Folding kinetics of a lattice protein via a forward flux sampling approach. Borrero EE; Escobedo FA J Chem Phys; 2006 Oct; 125(16):164904. PubMed ID: 17092136 [TBL] [Abstract][Full Text] [Related]
26. Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study. Contreras Martínez LM; Martínez-Veracoechea FJ; Pohkarel P; Stroock AD; Escobedo FA; DeLisa MP Biotechnol Bioeng; 2006 May; 94(1):105-17. PubMed ID: 16528757 [TBL] [Abstract][Full Text] [Related]
27. Application of the diffusion-collision model to the folding of three-helix bundle proteins. Islam SA; Karplus M; Weaver DL J Mol Biol; 2002 Apr; 318(1):199-215. PubMed ID: 12054779 [TBL] [Abstract][Full Text] [Related]
28. Contact order and ab initio protein structure prediction. Bonneau R; Ruczinski I; Tsai J; Baker D Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448 [TBL] [Abstract][Full Text] [Related]
29. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Chan HS; Zhang Z; Wallin S; Liu Z Annu Rev Phys Chem; 2011; 62():301-26. PubMed ID: 21453060 [TBL] [Abstract][Full Text] [Related]
30. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. Shimada J; Kussell EL; Shakhnovich EI J Mol Biol; 2001 Apr; 308(1):79-95. PubMed ID: 11302709 [TBL] [Abstract][Full Text] [Related]
31. Effects of confinement on thermal stability and folding kinetics in a simple Ising-like model. Caraglio M; Pelizzola A Phys Biol; 2012 Feb; 9(1):016006. PubMed ID: 22313579 [TBL] [Abstract][Full Text] [Related]
32. Secondary structure length as a determinant of folding rate of proteins with two- and three-state kinetics. Huang JT; Cheng JP; Chen H Proteins; 2007 Apr; 67(1):12-7. PubMed ID: 17206660 [TBL] [Abstract][Full Text] [Related]
33. Transition-states in protein folding kinetics: the structural interpretation of Phi values. Weikl TR; Dill KA J Mol Biol; 2007 Feb; 365(5):1578-86. PubMed ID: 17141267 [TBL] [Abstract][Full Text] [Related]
34. Native geometry and the dynamics of protein folding. Faisca PF; Telo da Gama MM Biophys Chem; 2005 Apr; 115(2-3):169-75. PubMed ID: 15752600 [TBL] [Abstract][Full Text] [Related]
35. A simple thermodynamic test to discriminate between two-state and downhill folding. Oliva FY; Muñoz V J Am Chem Soc; 2004 Jul; 126(28):8596-7. PubMed ID: 15250680 [TBL] [Abstract][Full Text] [Related]
36. Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. Abkevich VI; Gutin AM; Shakhnovich EI J Mol Biol; 1995 Sep; 252(4):460-71. PubMed ID: 7563065 [TBL] [Abstract][Full Text] [Related]
37. K-Fold: a tool for the prediction of the protein folding kinetic order and rate. Capriotti E; Casadio R Bioinformatics; 2007 Feb; 23(3):385-6. PubMed ID: 17138584 [TBL] [Abstract][Full Text] [Related]
38. Interpreting the folding kinetics of helical proteins. Zhou Y; Karplus M Nature; 1999 Sep; 401(6751):400-3. PubMed ID: 10517642 [TBL] [Abstract][Full Text] [Related]
39. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Pande VS; Baker I; Chapman J; Elmer SP; Khaliq S; Larson SM; Rhee YM; Shirts MR; Snow CD; Sorin EJ; Zagrovic B Biopolymers; 2003 Jan; 68(1):91-109. PubMed ID: 12579582 [TBL] [Abstract][Full Text] [Related]
40. Analyzing the effect of homogeneous frustration in protein folding. Contessoto VG; Lima DT; Oliveira RJ; Bruni AT; Chahine J; Leite VB Proteins; 2013 Oct; 81(10):1727-37. PubMed ID: 23609962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]