BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25245408)

  • 1. Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health.
    Gershoni M; Levin L; Ovadia O; Toiw Y; Shani N; Dadon S; Barzilai N; Bergman A; Atzmon G; Wainstein J; Tsur A; Nijtmans L; Glaser B; Mishmar D
    Genome Biol Evol; 2014 Sep; 6(10):2665-80. PubMed ID: 25245408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i.
    Gershoni M; Fuchs A; Shani N; Fridman Y; Corral-Debrinski M; Aharoni A; Frishman D; Mishmar D
    J Mol Biol; 2010 Nov; 404(1):158-71. PubMed ID: 20868692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves.
    Piccinini G; Iannello M; Puccio G; Plazzi F; Havird JC; Ghiselli F
    Mol Biol Evol; 2021 May; 38(6):2597-2614. PubMed ID: 33616640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Signatures of Mitonuclear Coevolution in Mammals.
    Weaver RJ; Rabinowitz S; Thueson K; Havird JC
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH: ubiquinone oxidoreductase Ndufc2 subunit.
    Raffa S; Scrofani C; Valente S; Micaloni A; Forte M; Bianchi F; Coluccia R; Geurts AM; Sciarretta S; Volpe M; Torrisi MR; Rubattu S
    Hum Mol Genet; 2017 Dec; 26(23):4541-4555. PubMed ID: 28973657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitonuclear interactions: evolutionary consequences over multiple biological scales.
    Wolff JN; Ladoukakis ED; Enríquez JA; Dowling DK
    Philos Trans R Soc Lond B Biol Sci; 2014 Jul; 369(1646):20130443. PubMed ID: 24864313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution.
    Maeda GP; Iannello M; McConie HJ; Ghiselli F; Havird JC
    J Evol Biol; 2021 Nov; 34(11):1722-1736. PubMed ID: 34533872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation.
    Bar-Yaacov D; Blumberg A; Mishmar D
    Biochim Biophys Acta; 2012; 1819(9-10):1107-11. PubMed ID: 22044624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexually Antagonistic Mitonuclear Coevolution in Duplicate Oxidative Phosphorylation Genes.
    Havird JC; McConie HJ
    Integr Comp Biol; 2019 Oct; 59(4):864-874. PubMed ID: 30942855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae.
    Nguyen THM; Sondhi S; Ziesel A; Paliwal S; Fiumera HL
    BMC Evol Biol; 2020 Sep; 20(1):128. PubMed ID: 32977769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong selective effects of mitochondrial DNA on the nuclear genome.
    Healy TM; Burton RS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6616-6621. PubMed ID: 32156736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap.
    Hill GE
    Ecol Evol; 2016 Aug; 6(16):5831-42. PubMed ID: 27547358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase.
    Hofhaus G; Attardi G
    Mol Cell Biol; 1995 Feb; 15(2):964-74. PubMed ID: 7823960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan.
    Bayona-Bafaluy MP; Müller S; Moraes CT
    Mol Biol Evol; 2005 Mar; 22(3):716-24. PubMed ID: 15574809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila.
    Mossman JA; Tross JG; Jourjine NA; Li N; Wu Z; Rand DM
    Mol Biol Evol; 2017 Feb; 34(2):447-466. PubMed ID: 28110272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?
    Burton RS; Barreto FS
    Mol Ecol; 2012 Oct; 21(20):4942-57. PubMed ID: 22994153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Effects of Mitonuclear Interactions on Mitochondrial DNA Gene Expression in Humans.
    Torres-Gonzalez E; Makova KD
    Front Genet; 2022; 13():797129. PubMed ID: 35846132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors.
    Gonzalez S
    Front Genet; 2021; 12():636294. PubMed ID: 33815470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication.
    Ellison CK; Burton RS
    J Evol Biol; 2010 Mar; 23(3):528-38. PubMed ID: 20070459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.