These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25245497)

  • 1. The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission.
    Lewis JD; Goodman SS
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):915-31. PubMed ID: 25245497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal contributions to short-latency transient-evoked otoacoustic emission components.
    Lewis JD; Goodman SS
    J Assoc Res Otolaryngol; 2015 Feb; 16(1):29-45. PubMed ID: 25303881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Apr; 121(4):2097-110. PubMed ID: 17471725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intermodulation distortion in transient-evoked otoacoustic emissions.
    Yates GK; Withnell RH
    Hear Res; 1999 Oct; 136(1-2):49-64. PubMed ID: 10511624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the medial olivocochlear efferent system in children. pure tone 1.0 kHz and 2.0 kHz suppressive effects on transient evoked otoacoustic emission.
    Morawski K; Namyslowski G; Kossowska I; Lisowska G; Urbaniec P
    Scand Audiol Suppl; 2001; (52):112-5. PubMed ID: 11318438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-domain observation of otoacoustic emissions during constant tone stimulation.
    Brass D; Kemp DT
    J Acoust Soc Am; 1991 Nov; 90(5):2415-27. PubMed ID: 1774412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient-evoked otoacoustic emission generators in a nonlinear cochlea.
    Moleti A; Botti T; Sisto R
    J Acoust Soc Am; 2012 Apr; 131(4):2891-903. PubMed ID: 22501067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of suppression of otoacoustic emissions evoked by two-tone bursts.
    Jedrzejczak WW; Smurzynski J; Blinowska KJ
    Hear Res; 2008 Jan; 235(1-2):80-9. PubMed ID: 18082347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
    Charaziak KK; Shera CA
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral analysis of frequency in human ears revealed by tone burst evoked otoacoustic emissions.
    Xu L; Probst R; Harris FP; Roede J
    Hear Res; 1994 Apr; 74(1-2):173-80. PubMed ID: 8040086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs.
    Goodman SS; Withnell RH; De Boer E; Lilly DJ; Nuttall AL
    Hear Res; 2004 Feb; 188(1-2):57-69. PubMed ID: 14759571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of tone burst evoked otoacoustic emissions in relation to frequency separation.
    Yoshikawa H; Smurzynski J; Probst R
    Hear Res; 2000 Oct; 148(1-2):95-106. PubMed ID: 10978828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tone-burst-evoked otoacoustic emissions from normal-hearing subjects.
    Norton SJ; Neely ST
    J Acoust Soc Am; 1987 Jun; 81(6):1860-72. PubMed ID: 3611507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels.
    Sisto R; Moleti A
    J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.