BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25245683)

  • 1. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography.
    Filas BA; Xu G; Taber LA
    Methods Mol Biol; 2015; 1189():3-16. PubMed ID: 25245683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo characterization of chick embryo mesoderm by optical coherence tomography-assisted microindentation.
    Marrese M; Antonovaité N; Nelemans BKA; Ahmadzada A; Iannuzzi D; Smit TH
    FASEB J; 2020 Sep; 34(9):12269-12277. PubMed ID: 33411409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent material properties of developing epithelial tissues.
    Machado PF; Duque J; Étienne J; Martinez-Arias A; Blanchard GB; Gorfinkiel N
    BMC Biol; 2015 Nov; 13():98. PubMed ID: 26596771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography.
    Raghunathan R; Zhang J; Wu C; Rippy J; Singh M; Larin KV; Scarcelli G
    J Biomed Opt; 2017 Aug; 22(8):1-6. PubMed ID: 28861955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart.
    Filas BA; Efimov IR; Taber LA
    Anat Rec (Hoboken); 2007 Sep; 290(9):1057-68. PubMed ID: 17721979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos.
    Midgett M; Chivukula VK; Dorn C; Wallace S; Rugonyi S
    J R Soc Interface; 2015 Oct; 12(111):20150652. PubMed ID: 26468069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties and residual stress in the stage 12 chick heart during cardiac looping.
    Zamir EA; Taber LA
    J Biomech Eng; 2004 Dec; 126(6):823-30. PubMed ID: 15796341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.
    Goktas S; Uslu FE; Kowalski WJ; Ermek E; Keller BB; Pekkan K
    PLoS One; 2016; 11(8):e0161611. PubMed ID: 27552150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence elastography of engineered and developing tissue.
    Ko HJ; Tan W; Stack R; Boppart SA
    Tissue Eng; 2006 Jan; 12(1):63-73. PubMed ID: 16499443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple model for estimating the active reactions of embryonic tissues to a deforming mechanical force.
    Mansurov AN; Stein AA; Beloussov LV
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1123-36. PubMed ID: 22972368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-indentation and optical coherence tomography for the mechanical characterization of embryos: Experimental setup and measurements on chicken embryos.
    Marrese M; Antonovaite N; Nelemans BKA; Smit TH; Iannuzzi D
    Acta Biomater; 2019 Oct; 97():524-534. PubMed ID: 31377425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fiber optic system for measuring dynamic mechanical properties of embryonic tissues.
    Moore SW
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):45-50. PubMed ID: 8200667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastographic contrast generation in optical coherence tomography from a localized shear stress.
    Grimwood A; Garcia L; Bamber J; Holmes J; Woolliams P; Tomlins P; Pankhurst QA
    Phys Med Biol; 2010 Sep; 55(18):5515-28. PubMed ID: 20798457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to study the hemodynamics of chicken embryo's aortic arches using optical coherence tomography.
    Ko ZY; Mehta K; Jamil M; Yap CH; Chen N
    J Biophotonics; 2017 Mar; 10(3):353-359. PubMed ID: 27813365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint.
    Roddy KA; Kelly GM; van Es MH; Murphy P; Prendergast PJ
    J Biomech; 2011 Jan; 44(1):143-9. PubMed ID: 20883996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical asymmetry in the embryonic chick heart during looping.
    Zamir EA; Srinivasan V; Perucchio R; Taber LA
    Ann Biomed Eng; 2003 Dec; 31(11):1327-36. PubMed ID: 14758923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of head fold formation: investigating tissue-level forces during early development.
    Varner VD; Voronov DA; Taber LA
    Development; 2010 Nov; 137(22):3801-11. PubMed ID: 20929950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography.
    Li P; Liu A; Shi L; Yin X; Rugonyi S; Wang RK
    Phys Med Biol; 2011 Nov; 56(22):7081-92. PubMed ID: 22016198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking morphogenetic tissue deformations in the early chick embryo.
    Filas BA; Varner VD; Voronov DA; Taber LA
    J Vis Exp; 2011 Oct; (56):e3129. PubMed ID: 22025033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative mechanical evaluation and analysis of Drosophila embryos through the stages of embryogenesis.
    Shen Y; Zhang R; Cozen S; Xi N; Wejinya UC; Hao L
    Birth Defects Res C Embryo Today; 2008 Sep; 84(3):204-14. PubMed ID: 18773458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.