These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25245702)

  • 1. Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf.
    Palm MM; Merks RM
    Methods Mol Biol; 2015; 1189():301-22. PubMed ID: 25245702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-based computational modeling of vascular morphogenesis using Tissue Simulation Toolkit.
    Daub JT; Merks RM
    Methods Mol Biol; 2015; 1214():67-127. PubMed ID: 25468600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting a Plant Tissue Model to Animal Development: Introducing Cell Sliding into VirtualLeaf.
    Wolff HB; Davidson LA; Merks RMH
    Bull Math Biol; 2019 Aug; 81(8):3322-3341. PubMed ID: 30927191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building simulation models of developing plant organs using VirtualLeaf.
    Merks RM; Guravage MA
    Methods Mol Biol; 2013; 959():333-52. PubMed ID: 23299687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.
    Merks RM; Guravage M; Inzé D; Beemster GT
    Plant Physiol; 2011 Feb; 155(2):656-66. PubMed ID: 21148415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the advection-diffusion equations in biological contexts using the cellular Potts model.
    Dan D; Mueller C; Chen K; Glazier JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041909. PubMed ID: 16383422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational energetic model of morphogenesis based on multi-agent Cellular Potts Model.
    Tripodi S; Ballet P; Rodin V
    Adv Exp Med Biol; 2010; 680():685-92. PubMed ID: 20865555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Plant Tissue Development Using VirtualLeaf.
    Antonovici CC; Peerdeman GY; Wolff HB; Merks RMH
    Methods Mol Biol; 2022; 2395():165-198. PubMed ID: 34822154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for three-dimensional simulation of morphogenesis.
    Cickovski TM; Huang C; Chaturvedi R; Glimm T; Hentschel HG; Alber MS; Glazier JA; Newman SA; Izaguirre JA
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):273-88. PubMed ID: 17044166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale modeling of tissues using CompuCell3D.
    Swat MH; Thomas GL; Belmonte JM; Shirinifard A; Hmeljak D; Glazier JA
    Methods Cell Biol; 2012; 110():325-66. PubMed ID: 22482955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis.
    Hirashima T; Rens EG; Merks RMH
    Dev Growth Differ; 2017 Jun; 59(5):329-339. PubMed ID: 28593653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming Juxtacrine-Based Synthetic Signaling Networks in a Cellular Potts Framework.
    Lam C; Morsut L
    Methods Mol Biol; 2024; 2760():283-307. PubMed ID: 38468095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.
    Andasari V; Roper RT; Swat MH; Chaplain MA
    PLoS One; 2012; 7(3):e33726. PubMed ID: 22461894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiscale hybrid approach for vasculogenesis and related potential blocking therapies.
    Scianna M; Munaron L; Preziosi L
    Prog Biophys Mol Biol; 2011 Aug; 106(2):450-62. PubMed ID: 21300081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CompuCell, a multi-model framework for simulation of morphogenesis.
    Izaguirre JA; Chaturvedi R; Huang C; Cickovski T; Coffland J; Thomas G; Forgacs G; Alber M; Hentschel G; Newman SA; Glazier JA
    Bioinformatics; 2004 May; 20(7):1129-37. PubMed ID: 14764549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating microbial community patterning using Biocellion.
    Kang S; Kahan S; Momeni B
    Methods Mol Biol; 2014; 1151():233-53. PubMed ID: 24838890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis.
    Czirok A; Isai DG
    Phys Biol; 2014 Dec; 12(1):016005. PubMed ID: 25502910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model of chemotaxis-based cell aggregation.
    Eyiyurekli M; Manley P; Lelkes PI; Breen DE
    Biosystems; 2008 Sep; 93(3):226-39. PubMed ID: 18602744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Scale Tissue Morphogenesis Simulation on Heterogenous Systems Based on a Flexible Biomechanical Cell Model.
    Jeannin-Girardon A; Ballet P; Rodin V
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1021-33. PubMed ID: 26451816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global sensitivity analysis approach for morphogenesis models.
    Boas SE; Navarro Jimenez MI; Merks RM; Blom JG
    BMC Syst Biol; 2015 Nov; 9():85. PubMed ID: 26589144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.