BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25245952)

  • 1. Phylogenetic investigation of human FGFR-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution.
    Ajmal W; Khan H; Abbasi AA
    Mol Phylogenet Evol; 2014 Dec; 81():49-60. PubMed ID: 25245952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomic analysis reveals ancient segmental duplications in the human genome.
    Hafeez M; Shabbir M; Altaf F; Abbasi AA
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):95-100. PubMed ID: 26327327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourfold paralogy regions on human HOX-bearing chromosomes: role of ancient segmental duplications in the evolution of vertebrate genome.
    Asrar Z; Haq F; Abbasi AA
    Mol Phylogenet Evol; 2013 Mar; 66(3):737-47. PubMed ID: 23142696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating large-scale phylogenetic datasets to dissect the ancient evolutionary history of vertebrate genome.
    Ambreen S; Khalil F; Abbasi AA
    Mol Phylogenet Evol; 2014 Sep; 78():1-13. PubMed ID: 24821622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insight into the evolutionary history of human MHC paralogon.
    Naz R; Tahir S; Abbasi AA
    Mol Phylogenet Evol; 2017 May; 110():1-6. PubMed ID: 28249742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification of four human HOX gene clusters by step-wise evolution rather than ancient whole-genome duplications.
    Abbasi AA
    Dev Genes Evol; 2015 Nov; 225(6):353-7. PubMed ID: 26481129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic phylogenomic evidence of en bloc duplication of the ancestral 8p11.21-8p21.3-like region.
    Vienne A; Rasmussen J; Abi-Rached L; Pontarotti P; Gilles A
    Mol Biol Evol; 2003 Aug; 20(8):1290-8. PubMed ID: 12777526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight into the phylogenetic history of HOX linked gene families in vertebrates.
    Abbasi AA; Grzeschik KH
    BMC Evol Biol; 2007 Nov; 7():239. PubMed ID: 18053128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analyses of human 1/2/8/20 paralogons suggest segmental duplications during animal evolution.
    Haq F; Saeed U; Khalid R; Qasim M; Mehmood M
    3 Biotech; 2019 Jun; 9(6):233. PubMed ID: 31139548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
    Abbasi AA
    Mol Phylogenet Evol; 2010 Nov; 57(2):836-48. PubMed ID: 20696259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancient genome duplications did not structure the human Hox-bearing chromosomes.
    Hughes AL; da Silva J; Friedman R
    Genome Res; 2001 May; 11(5):771-80. PubMed ID: 11337473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.
    Cañestro C; Albalat R; Irimia M; Garcia-Fernàndez J
    Semin Cell Dev Biol; 2013 Feb; 24(2):83-94. PubMed ID: 23291262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions.
    Larsson TA; Olsson F; Sundstrom G; Lundin LG; Brenner S; Venkatesh B; Larhammar D
    BMC Evol Biol; 2008 Jun; 8():184. PubMed ID: 18578868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.
    Lynch VJ; Wagner GP
    PLoS Genet; 2009 Jan; 5(1):e1000349. PubMed ID: 19165336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
    Escriva H; Manzon L; Youson J; Laudet V
    Mol Biol Evol; 2002 Sep; 19(9):1440-50. PubMed ID: 12200472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic history of paralogous gene quartets on human chromosomes 1, 2, 8 and 20 provides no evidence in favor of the vertebrate octoploidy hypothesis.
    Abbasi AA; Hanif H
    Mol Phylogenet Evol; 2012 Jun; 63(3):922-7. PubMed ID: 22425707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.