These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 25246108)
1. Direct observation of a nonheme iron(IV)-oxo complex that mediates aromatic C-F hydroxylation. Sahu S; Quesne MG; Davies CG; Dürr M; Ivanović-Burmazović I; Siegler MA; Jameson GN; de Visser SP; Goldberg DP J Am Chem Soc; 2014 Oct; 136(39):13542-5. PubMed ID: 25246108 [TBL] [Abstract][Full Text] [Related]
2. Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex. Sheng Y; Abelson CS; Prakash J; Draksharapu A; Young VG; Que L Angew Chem Int Ed Engl; 2021 Sep; 60(38):20991-20998. PubMed ID: 34292639 [TBL] [Abstract][Full Text] [Related]
3. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes. de Visser SP; Oh K; Han AR; Nam W Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641 [TBL] [Abstract][Full Text] [Related]
4. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Faponle AS; Quesne MG; Sastri CV; Banse F; de Visser SP Chemistry; 2015 Jan; 21(3):1221-36. PubMed ID: 25399782 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates. Ansari A; Kaushik A; Rajaraman G J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. Jensen MP; Lange SJ; Mehn MP; Que EL; Que L J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539 [TBL] [Abstract][Full Text] [Related]
8. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450. Tahsini L; Bagherzadeh M; Nam W; de Visser SP Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505 [TBL] [Abstract][Full Text] [Related]
9. Tuning the regio- and stereoselectivity of C-H activation in n-octanes by cytochrome P450 BM-3 with fluorine substituents: evidence for interactions between a C-F bond and aromatic π systems. Wu LL; Yang CL; Lo FC; Chiang CH; Chang CW; Ng KY; Chou HH; Hung HY; Chan SI; Yu SS Chemistry; 2011 Apr; 17(17):4774-87. PubMed ID: 21400620 [TBL] [Abstract][Full Text] [Related]
10. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. Chen K; Que L J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057 [TBL] [Abstract][Full Text] [Related]
11. Theoretical investigation of C--H hydroxylation by (N4Py)Fe(IV)=O(2+): an oxidant more powerful than P450? Kumar D; Hirao H; Que L; Shaik S J Am Chem Soc; 2005 Jun; 127(22):8026-7. PubMed ID: 15926822 [TBL] [Abstract][Full Text] [Related]
12. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
13. Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach. Sahu S; Widger LR; Quesne MG; de Visser SP; Matsumura H; Moënne-Loccoz P; Siegler MA; Goldberg DP J Am Chem Soc; 2013 Jul; 135(29):10590-3. PubMed ID: 23834409 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Dantignana V; Serrano-Plana J; Draksharapu A; Magallón C; Banerjee S; Fan R; Gamba I; Guo Y; Que L; Costas M; Company A J Am Chem Soc; 2019 Sep; 141(38):15078-15091. PubMed ID: 31469954 [TBL] [Abstract][Full Text] [Related]
16. Redox potential and C-H bond cleaving properties of a nonheme Fe(IV)=O complex in aqueous solution. Wang D; Zhang M; Bühlmann P; Que L J Am Chem Soc; 2010 Jun; 132(22):7638-44. PubMed ID: 20476758 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. Xue SS; Li XX; Lee YM; Seo MS; Kim Y; Yanagisawa S; Kubo M; Jeon YK; Kim WS; Sarangi R; Kim SH; Fukuzumi S; Nam W J Am Chem Soc; 2020 Sep; 142(36):15305-15319. PubMed ID: 32786748 [TBL] [Abstract][Full Text] [Related]
18. C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes, Including Hydroxylation of n-Butane. Kleespies ST; Oloo WN; Mukherjee A; Que L Inorg Chem; 2015 Jun; 54(11):5053-64. PubMed ID: 25751610 [TBL] [Abstract][Full Text] [Related]
19. Computational Study of Aromatic Hydroxylation Catalyzed by the Iron-Dependent Hydroxylase PqqB Involved in the Biosynthesis of Redox Cofactor Pyrroloquinoline Quinone. Liu Y; Liu Y Inorg Chem; 2022 Apr; 61(15):5943-5956. PubMed ID: 35362953 [TBL] [Abstract][Full Text] [Related]
20. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]