These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25246226)

  • 1. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution intracellular recordings using a real-time computational model of the electrode.
    Brette R; Piwkowska Z; Monier C; Rudolph-Lilith M; Fournier J; Levy M; Frégnac Y; Bal T; Destexhe A
    Neuron; 2008 Aug; 59(3):379-91. PubMed ID: 18701064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discontinuous single electrode voltage-clamp measurements: assessment of clamp accuracy in Vicia faba guard cells.
    Roelfsema MR; Steinmeyer R; Hedrich R
    J Exp Bot; 2001 Sep; 52(362):1933-9. PubMed ID: 11520882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-clamp analysis of neurons within deep layers of the brain.
    Richter DW; Pierrefiche O; Lalley PM; Polder HR
    J Neurosci Methods; 1996 Aug; 67(2):121-3. PubMed ID: 8872877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved hybrid clamp: resolution of tail currents following single action potentials.
    Dietrich D; Clusmann H; Kral T
    J Neurosci Methods; 2002 Apr; 116(1):55-63. PubMed ID: 12007983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials.
    Sutor B; Grimm C; Polder HR
    Pflugers Arch; 2003 Apr; 446(1):133-41. PubMed ID: 12690472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of errors in different single-electrode voltage-clamp techniques: a computer simulation study.
    Sala F; Sala S
    J Neurosci Methods; 1994 Aug; 53(2):189-97. PubMed ID: 7823621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma.
    Velte TJ; Miller RF
    J Neurophysiol; 1996 May; 75(5):2129-43. PubMed ID: 8734609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.
    Hartveit E; Veruki ML
    J Neurosci Methods; 2010 Mar; 187(1):13-25. PubMed ID: 20074587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.
    Kind T; Issing M; Arnold R; Müller B
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1600-9. PubMed ID: 12549742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed dynamic-clamp interface.
    Yang Y; Adowski T; Ramamurthy B; Neef A; Xu-Friedman MA
    J Neurophysiol; 2015 Apr; 113(7):2713-20. PubMed ID: 25632075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes of transient instabilities in the dynamic clamp.
    Preyer AJ; Butera RJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):190-8. PubMed ID: 19228559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single electrode dynamic clamp with StdpC.
    Samu D; Marra V; Kemenes I; Crossley M; Kemenes G; Staras K; Nowotny T
    J Neurosci Methods; 2012 Oct; 211(1):11-21. PubMed ID: 22898473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High quality ion channel analysis on a chip with the NPC technology.
    Brüggemann A; George M; Klau M; Beckler M; Steindl J; Behrends JC; Fertig N
    Assay Drug Dev Technol; 2003 Oct; 1(5):665-73. PubMed ID: 15090239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances.
    Bar-Yehuda D; Korngreen A
    J Neurophysiol; 2008 Mar; 99(3):1127-36. PubMed ID: 18184885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination and compensation of series resistances during whole-cell patch-clamp recordings using an active bridge circuit and the phase-sensitive technique.
    Riedemann T; Polder HR; Sutor B
    Pflugers Arch; 2016 Oct; 468(10):1725-40. PubMed ID: 27539299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.