BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25246311)

  • 1. Silicon: the evolution of its use in biomaterials.
    Henstock JR; Canham LT; Anderson SI
    Acta Biomater; 2015 Jan; 11():17-26. PubMed ID: 25246311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous silicon confers bioactivity to polycaprolactone composites in vitro.
    Henstock JR; Ruktanonchai UR; Canham LT; Anderson SI
    J Mater Sci Mater Med; 2014 Apr; 25(4):1087-97. PubMed ID: 24398914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.
    Hoppe A; Güldal NS; Boccaccini AR
    Biomaterials; 2011 Apr; 32(11):2757-74. PubMed ID: 21292319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Impact of Bioactive Glasses and Their Dissolution Products.
    Hoppe A; Boccaccini AR
    Front Oral Biol; 2015; 17():22-32. PubMed ID: 26201273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.
    Khan AF; Saleem M; Afzal A; Ali A; Khan A; Khan AR
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():245-52. PubMed ID: 24411375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro.
    Knabe C; Houshmand A; Berger G; Ducheyne P; Gildenhaar R; Kranz I; Stiller M
    J Biomed Mater Res A; 2008 Mar; 84(4):856-68. PubMed ID: 17635025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities.
    Yan X; Yu C; Zhou X; Tang J; Zhao D
    Angew Chem Int Ed Engl; 2004 Nov; 43(44):5980-4. PubMed ID: 15547911
    [No Abstract]   [Full Text] [Related]  

  • 8. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.
    Lehmann G; Cacciotti I; Palmero P; Montanaro L; Bianco A; Campagnolo L; Camaioni A
    Biomed Mater; 2012 Oct; 7(5):055001. PubMed ID: 22781924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibility.
    Murphy S; Wren AW; Towler MR; Boyd D
    J Mater Sci Mater Med; 2010 Oct; 21(10):2827-34. PubMed ID: 20711638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation.
    Brauer DS; Rüssel C; Li W; Habelitz S
    J Biomed Mater Res A; 2006 May; 77(2):213-9. PubMed ID: 16392127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors.
    Kim SR; Lee JH; Kim YT; Riu DH; Jung SJ; Lee YJ; Chung SC; Kim YH
    Biomaterials; 2003 Apr; 24(8):1389-98. PubMed ID: 12527280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro.
    Phan PV; Grzanna M; Chu J; Polotsky A; el-Ghannam A; Van Heerden D; Hungerford DS; Frondoza CG
    J Biomed Mater Res A; 2003 Dec; 67(3):1001-8. PubMed ID: 14613250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of bone around titanium implants and bioactive glass particles: an experimental study in rats.
    Gorustovich A; Rosenbusch M; Guglielmotti MB
    Int J Oral Maxillofac Implants; 2002; 17(5):644-50. PubMed ID: 12381064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in-vitro bioactivity of mesoporous bioactive glasses.
    Yan X; Huang X; Yu C; Deng H; Wang Y; Zhang Z; Qiao S; Lu G; Zhao D
    Biomaterials; 2006 Jun; 27(18):3396-403. PubMed ID: 16504289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix production by osteoblasts on bioactive substrata in vitro.
    Davies JE; Matsuda T
    Scanning Microsc; 1988 Sep; 2(3):1445-52. PubMed ID: 2849201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of bioactive silicate ceramics.
    Wu C; Chang J
    Biomed Mater; 2013 Jun; 8(3):032001. PubMed ID: 23567351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line.
    Silva GA; Coutinho OP; Ducheyne P; Shapiro IM; Reis RL
    Biomaterials; 2007 Jan; 28(2):326-34. PubMed ID: 16876242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.