BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25246540)

  • 1. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants.
    Marriott PE; Sibout R; Lapierre C; Fangel JU; Willats WG; Hofte H; Gómez LD; McQueen-Mason SJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14601-6. PubMed ID: 25246540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon.
    Whitehead C; Ostos Garrido FJ; Reymond M; Simister R; Distelfeld A; Atienza SG; Piston F; Gomez LD; McQueen-Mason SJ
    New Phytol; 2018 May; 218(3):974-985. PubMed ID: 29574807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon.
    Buanafina MM; Fescemyer HW; Sharma M; Shearer EA
    Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility.
    de Souza WR; Martins PK; Freeman J; Pellny TK; Michaelson LV; Sampaio BL; Vinecky F; Ribeiro AP; da Cunha BADB; Kobayashi AK; de Oliveira PA; Campanha RB; Pacheco TF; Martarello DCI; Marchiosi R; Ferrarese-Filho O; Dos Santos WD; Tramontina R; Squina FM; Centeno DC; Gaspar M; Braga MR; Tiné MAS; Ralph J; Mitchell RAC; Molinari HBC
    New Phytol; 2018 Apr; 218(1):81-93. PubMed ID: 29315591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of lignin-deficient Brachypodium distachyon (L.) Beauv. mutants induced by gamma radiation.
    Lee MB; Kim JY; Seo YW
    J Sci Food Agric; 2017 May; 97(7):2159-2165. PubMed ID: 27604502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass.
    Meineke T; Manisseri C; Voigt CA
    PLoS One; 2014; 9(8):e103580. PubMed ID: 25133818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon.
    Napoleão TA; Soares G; Vital CE; Bastos C; Castro R; Loureiro ME; Giordano A
    Plant Sci; 2017 Oct; 263():46-54. PubMed ID: 28818383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality.
    Ho-Yue-Kuang S; Alvarado C; Antelme S; Bouchet B; Cézard L; Le Bris P; Legée F; Maia-Grondard A; Yoshinaga A; Saulnier L; Guillon F; Sibout R; Lapierre C; Chateigner-Boutin AL
    J Exp Bot; 2016 Jan; 67(1):227-37. PubMed ID: 26433202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the substitution and cross-linking of glucuronoarabinoxylans affects cell wall architecture in Brachypodium distachyon.
    Tryfona T; Pankratova Y; Petrik D; Rebaque Moran D; Wightman R; Yu X; Echevarría-Poza A; Deralia PK; Vilaplana F; Anderson CT; Hong M; Dupree P
    New Phytol; 2024 Apr; 242(2):524-543. PubMed ID: 38413240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SECONDARY WALL ASSOCIATED MYB1 is a positive regulator of secondary cell wall thickening in Brachypodium distachyon and is not found in the Brassicaceae.
    Handakumbura PP; Brow K; Whitney IP; Zhao K; Sanguinet KA; Lee SJ; Olins J; Romero-Gamboa SP; Harrington MJ; Bascom CJ; MacKinnon KJ; Veling MT; Liu L; Lee JE; Vogel JP; O'Malley RC; Bezanilla M; Bartley LE; Hazen SP
    Plant J; 2018 Nov; 96(3):532-545. PubMed ID: 30054951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content.
    Bhatia R; Dalton S; Roberts LA; Moron-Garcia OM; Iacono R; Kosik O; Gallagher JA; Bosch M
    Sci Rep; 2019 Jun; 9(1):8800. PubMed ID: 31217516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode.
    Matos DA; Whitney IP; Harrington MJ; Hazen SP
    PLoS One; 2013; 8(11):e80640. PubMed ID: 24278300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering grass biomass for sustainable and enhanced bioethanol production.
    Mohapatra S; Mishra SS; Bhalla P; Thatoi H
    Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon.
    Bouvier d'Yvoire M; Bouchabke-Coussa O; Voorend W; Antelme S; Cézard L; Legée F; Lebris P; Legay S; Whitehead C; McQueen-Mason SJ; Gomez LD; Jouanin L; Lapierre C; Sibout R
    Plant J; 2013 Feb; 73(3):496-508. PubMed ID: 23078216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkage Mapping of Stem Saccharification Digestibility in Rice.
    Liu B; Gómez LD; Hua C; Sun L; Ali I; Huang L; Yu C; Simister R; Steele-King C; Gan Y; McQueen-Mason SJ
    PLoS One; 2016; 11(7):e0159117. PubMed ID: 27415441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.
    Trabucco GM; Matos DA; Lee SJ; Saathoff AJ; Priest HD; Mockler TC; Sarath G; Hazen SP
    BMC Biotechnol; 2013 Jul; 13():61. PubMed ID: 23902793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1.
    Hirano K; Masuda R; Takase W; Morinaka Y; Kawamura M; Takeuchi Y; Takagi H; Yaegashi H; Natsume S; Terauchi R; Kotake T; Matsushita Y; Sazuka T
    Planta; 2017 Jul; 246(1):61-74. PubMed ID: 28357539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.
    Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D
    Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.
    Li F; Xie G; Huang J; Zhang R; Li Y; Zhang M; Wang Y; Li A; Li X; Xia T; Qu C; Hu F; Ragauskas AJ; Peng L
    Plant Biotechnol J; 2017 Sep; 15(9):1093-1104. PubMed ID: 28117552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.