These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 25246709)
21. Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) Reduces Proliferation and De Novo Lipogenesis of EGFRvIII Human Glioblastoma Cells. Jones JE; Esler WP; Patel R; Lanba A; Vera NB; Pfefferkorn JA; Vernochet C PLoS One; 2017; 12(1):e0169566. PubMed ID: 28081256 [TBL] [Abstract][Full Text] [Related]
22. Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells--an in vitro and in silico study. Pandrangi SL; Chikati R; Chauhan PS; Kumar CS; Banarji A; Saxena S Tumour Biol; 2014 Jan; 35(1):723-37. PubMed ID: 23982874 [TBL] [Abstract][Full Text] [Related]
23. Mammospheres of hormonal receptor positive breast cancer diverge to triple-negative phenotype. Laranjo M; Carvalho MJ; Costa T; Alves A; Oliveira RC; Casalta-Lopes J; Cordeiro P; Botas F; Abrantes AM; Paiva A; Oliveira C; Botelho MF Breast; 2018 Apr; 38():22-29. PubMed ID: 29182983 [TBL] [Abstract][Full Text] [Related]
24. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. Scott KE; Wheeler FB; Davis AL; Thomas MJ; Ntambi JM; Seals DF; Kridel SJ PLoS One; 2012; 7(1):e29761. PubMed ID: 22238651 [TBL] [Abstract][Full Text] [Related]
25. Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Nishi M; Akutsu H; Kudoh A; Kimura H; Yamamoto N; Umezawa A; Lee SW; Ryo A Oncotarget; 2014 Sep; 5(18):8665-80. PubMed ID: 25228591 [TBL] [Abstract][Full Text] [Related]
26. Histone deacetylase inhibitors stimulate dedifferentiation of human breast cancer cells through WNT/β-catenin signaling. Debeb BG; Lacerda L; Xu W; Larson R; Solley T; Atkinson R; Sulman EP; Ueno NT; Krishnamurthy S; Reuben JM; Buchholz TA; Woodward WA Stem Cells; 2012 Nov; 30(11):2366-77. PubMed ID: 22961641 [TBL] [Abstract][Full Text] [Related]
27. 24-Dehydrocholesterol reductase promotes the growth of breast cancer stem-like cells through the Hedgehog pathway. Qiu T; Cao J; Chen W; Wang J; Wang Y; Zhao L; Liu M; He L; Wu G; Li H; Gu H Cancer Sci; 2020 Oct; 111(10):3653-3664. PubMed ID: 32713162 [TBL] [Abstract][Full Text] [Related]
28. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Petrachi T; Romagnani A; Albini A; Longo C; Argenziano G; Grisendi G; Dominici M; Ciarrocchi A; Dallaglio K Oncotarget; 2017 Jan; 8(4):6914-6928. PubMed ID: 28036292 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and characterization of a BODIPY-labeled derivative of Soraphen A that binds to acetyl-CoA carboxylase. Raymer B; Kavana M; Price A; Wang B; Corcoran L; Kulathila R; Groarke J; Mann T Bioorg Med Chem Lett; 2009 May; 19(10):2804-7. PubMed ID: 19359168 [TBL] [Abstract][Full Text] [Related]
30. Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells. Kurebayashi J; Koike Y; Ohta Y; Saitoh W; Yamashita T; Kanomata N; Moriya T Cancer Sci; 2017 May; 108(5):918-930. PubMed ID: 28211214 [TBL] [Abstract][Full Text] [Related]
31. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Al-Dhfyan A; Alhoshani A; Korashy HM Mol Cancer; 2017 Jan; 16(1):14. PubMed ID: 28103884 [TBL] [Abstract][Full Text] [Related]
32. Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A. Gao J; Liang L; Chen Q; Zhang L; Huang T J Comput Aided Mol Des; 2018 Apr; 32(4):547-557. PubMed ID: 29464467 [TBL] [Abstract][Full Text] [Related]
33. In Vitro Assays of Breast Cancer Stem Cells. Samanta D; Semenza GL Methods Mol Biol; 2018; 1742():237-246. PubMed ID: 29330805 [TBL] [Abstract][Full Text] [Related]
34. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. Tin AS; Park AH; Sundar SN; Firestone GL BMC Biol; 2014 Sep; 12():72. PubMed ID: 25209720 [TBL] [Abstract][Full Text] [Related]
35. Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Schreurs M; van Dijk TH; Gerding A; Havinga R; Reijngoud DJ; Kuipers F Diabetes Obes Metab; 2009 Oct; 11(10):987-91. PubMed ID: 19519866 [TBL] [Abstract][Full Text] [Related]
36. Blood meal drives de novo lipogenesis in the fat body of Rhodnius prolixus. Saraiva FB; Alves-Bezerra M; Majerowicz D; Paes-Vieira L; Braz V; Almeida MGMD; Meyer-Fernandes JR; Gondim KC Insect Biochem Mol Biol; 2021 Jun; 133():103511. PubMed ID: 33278628 [TBL] [Abstract][Full Text] [Related]
37. Disruption of the NF-κB/IL-8 Signaling Axis by Sulconazole Inhibits Human Breast Cancer Stem Cell Formation. Choi HS; Kim JH; Kim SL; Lee DS Cells; 2019 Aug; 8(9):. PubMed ID: 31480284 [TBL] [Abstract][Full Text] [Related]
38. CD44hiCD24lo mammosphere-forming cells from primary breast cancer display resistance to multiple chemotherapeutic drugs. Ji P; Zhang Y; Wang SJ; Ge HL; Zhao GP; Xu YC; Wang Y Oncol Rep; 2016 Jun; 35(6):3293-302. PubMed ID: 27109463 [TBL] [Abstract][Full Text] [Related]
39. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Kakarala M; Brenner DE; Korkaya H; Cheng C; Tazi K; Ginestier C; Liu S; Dontu G; Wicha MS Breast Cancer Res Treat; 2010 Aug; 122(3):777-85. PubMed ID: 19898931 [TBL] [Abstract][Full Text] [Related]
40. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Corominas-Faja B; Vellon L; Cuyàs E; Buxó M; Martin-Castillo B; Serra D; García J; Lupu R; Menendez JA Histol Histopathol; 2017 Jul; 32(7):687-698. PubMed ID: 27714708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]