These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25246712)

  • 1. Diffuse interface models of locally inextensible vesicles in a viscous fluid.
    Aland S; Egerer S; Lowengrub J; Voigt A
    J Comput Phys; 2014 Nov; 277():32-47. PubMed ID: 25246712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules.
    Lowengrub J; Allard J; Aland S
    J Comput Phys; 2016 Mar; 309():112-128. PubMed ID: 26869729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of multicomponent vesicles in a viscous fluid.
    Sohn JS; Tseng YH; Li S; Voigt A; Lowengrub JS
    J Comput Phys; 2010; 229(1):119-144. PubMed ID: 20808718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study on the dynamics of a compound vesicle in shear flow.
    Sinha KP; Thaokar RM
    Soft Matter; 2019 Sep; 15(35):6994-7017. PubMed ID: 31433433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
    Kim Y; Lai MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066321. PubMed ID: 23368052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of vesicle and bubble dynamics in two-dimensional four-roll mill flows.
    Kim Y; Lai MC; Seol Y
    Phys Rev E; 2017 May; 95(5-1):053105. PubMed ID: 28618515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical computations of the dynamics of fluidic membranes and vesicles.
    Barrett JW; Garcke H; Nürnberg R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052704. PubMed ID: 26651720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a viscous vesicle in linear flows.
    Vlahovska PM; Gracia RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016313. PubMed ID: 17358259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axisymmetric multicomponent vesicles: A comparison of hydrodynamic and geometric models.
    Sohn J; Li S; Li X; Lowengrub JS
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):346-68. PubMed ID: 25830201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stable numerical method for the dynamics of fluidic membranes.
    Barrett JW; Garcke H; Nürnberg R
    Numer Math (Heidelb); 2016; 134(4):783-822. PubMed ID: 28603298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicles under simple shear flow: elucidating the role of relevant control parameters.
    Kaoui B; Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061905. PubMed ID: 20365188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swinging and tumbling of fluid vesicles in shear flow.
    Noguchi H; Gompper G
    Phys Rev Lett; 2007 Mar; 98(12):128103. PubMed ID: 17501159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a multicomponent vesicle in shear flow.
    Liu K; Marple GR; Allard J; Li S; Veerapaneni S; Lowengrub J
    Soft Matter; 2017 May; 13(19):3521-3531. PubMed ID: 28440378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the flow in diffuse interface methods of solidification.
    Subhedar A; Steinbach I; Varnik F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023303. PubMed ID: 26382542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation tension and shape transition of vesicles: renormalisation calculations and Monte Carlo simulations.
    Gueguen G; Destainville N; Manghi M
    Soft Matter; 2017 Sep; 13(36):6100-6117. PubMed ID: 28885628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A diffuse-interface method for two-phase flows with soluble surfactants.
    Teigen KE; Song P; Lowengrub J; Voigt A
    J Comput Phys; 2011 Jan; 230(2):375-393. PubMed ID: 21218125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of inextensible capsules in shear flow under the effect of the natural state.
    Niu X; Pan TW; Glowinski R
    Biomech Model Mechanobiol; 2015 Aug; 14(4):865-76. PubMed ID: 25510228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.