BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25246785)

  • 1. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model.
    Barrientos-Durán A; Carpenter EM; Zur Nieden NI; Malinin TI; Rodríguez-Manzaneque JC; Zanello LP
    Int J Nanomedicine; 2014; 9():4277-91. PubMed ID: 25246785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Osteogenesis of Human Mesenchymal Stem Cells in Presence of Single-Walled Carbon Nanotubes.
    Kim HB; Jin B; Patel DK; Kim JW; Kim J; Seonwoo H; Lim KT
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):463-468. PubMed ID: 31056505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility testing of single-walled carbon nanotubes on murine preosteoblasts: higher osteoblastic differentiation with BMP-9 than with BMP-2.
    Alinejad Y; Drevelle O; Daviau A; Faucheux N; Soucy G
    J Biomed Nanotechnol; 2013 Nov; 9(11):1904-13. PubMed ID: 24059089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.
    Mikael PE; Amini AR; Basu J; Josefina Arellano-Jimenez M; Laurencin CT; Sanders MM; Barry Carter C; Nukavarapu SP
    Biomed Mater; 2014 Jun; 9(3):035001. PubMed ID: 24687391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway.
    Yan X; Yang W; Shao Z; Yang S; Liu X
    Int J Nanomedicine; 2016; 11():5473-5484. PubMed ID: 27799770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The comparison of biocompatibility and osteoinductivity between multi-walled and single-walled carbon nanotube/PHBV composites.
    Pan W; Xiao X; Li J; Deng S; Shan Q; Yue Y; Tian Y; Nabar NR; Wang M; Hao L
    J Mater Sci Mater Med; 2018 Dec; 29(12):189. PubMed ID: 30535725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials.
    Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q
    J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells.
    Liang H; Li X; Shimer AL; Balian G; Shen FH
    Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes.
    Li X; Gao H; Uo M; Sato Y; Akasaka T; Abe S; Feng Q; Cui F; Watari F
    Biomed Mater; 2009 Feb; 4(1):015005. PubMed ID: 18981539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization.
    Sá MA; Ribeiro HJ; Valverde TM; Sousa BR; Martins-Júnior PA; Mendes RM; Ladeira LO; Resende RR; Kitten GT; Ferreira AJ
    Braz J Med Biol Res; 2016 Feb; 49(2):e4888. PubMed ID: 26648087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone formation on carbon nanotube composite.
    Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M
    J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells.
    Bertassoli BM; Silva GAB; Albergaria JD; Jorge EC
    Cell Tissue Bank; 2020 Sep; 21(3):479-493. PubMed ID: 32385788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Acta Biomater; 2017 Mar; 50():450-461. PubMed ID: 27956359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects.
    Yanagi T; Kajiya H; Kawaguchi M; Kido H; Fukushima T
    J Biomater Appl; 2015 Mar; 29(8):1109-18. PubMed ID: 25336291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes.
    Liu D; Yi C; Zhang D; Zhang J; Yang M
    ACS Nano; 2010 Apr; 4(4):2185-95. PubMed ID: 20218664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic potential of Zn
    Wang B; Yang M; Liu L; Yan G; Yan H; Feng J; Li Z; Li D; Sun H; Yang B
    Biomater Sci; 2019 Nov; 7(12):5414-5423. PubMed ID: 31633717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.