These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25246878)

  • 21. Enhanced Efficiency of Dye-Sensitized Solar Cells Based on Polymer-Assisted Dispersion of Platinum Nanoparticles/Carbon Nanotubes Nanohybrid Films as FTO-Free Counter Electrodes.
    Li JW; Chen YS; Chen YF; Chen JX; Kuo CJ; Chen LY; Chiu CW
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ambient Synthesis of One-/Two-Dimensional CuAgSe Ternary Nanotubes as Counter Electrodes of Quantum-Dot-Sensitized Solar Cells.
    Chen XQ; Bai Y; Li Z; Wang LZ; Dou SX
    Chempluschem; 2016 Apr; 81(4):414-420. PubMed ID: 31968756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Nanotubes for Dye-Sensitized Solar Cells.
    Batmunkh M; Biggs MJ; Shapter JG
    Small; 2015 Jul; 11(25):2963-89. PubMed ID: 25864907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ambient Aqueous Growth of Cu
    Han C; Bai Y; Sun Q; Zhang S; Li Z; Wang L; Dou S
    Adv Sci (Weinh); 2016 May; 3(5):1500350. PubMed ID: 27812466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Crystalline Cu
    Chen CY; Jiang JR; Chuang WS; Liu MS; Lee SW
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32102394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of TiO
    Gnida P; Jarka P; Chulkin P; Drygała A; Libera M; Tański T; Schab-Balcerzak E
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.
    Wong AB; Brittman S; Yu Y; Dasgupta NP; Yang P
    Nano Lett; 2015 Jun; 15(6):4096-101. PubMed ID: 25993088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility.
    Guo Y; Wu Q; Li Y; Lu N; Mao K; Bai Y; Zhao J; Wang J; Zeng XC
    Nanoscale Horiz; 2019 Jan; 4(1):223-230. PubMed ID: 32254160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu
    Sava F; Diagne O; Galca AC; Simandan ID; Matei E; Burdusel M; Becherescu N; Becherescu V; Mihai C; Velea A
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-temperature synthesis of Cu(2-x)E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells.
    Chen XQ; Li Z; Bai Y; Sun Q; Wang LZ; Dou SX
    Chemistry; 2015 Jan; 21(3):1055-63. PubMed ID: 25400022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study.
    Nosheen E; Shah SM; Hussain H; Murtaza G
    J Photochem Photobiol B; 2016 Sep; 162():583-591. PubMed ID: 27479838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode.
    Rafique S; Rashid I; Sharif R
    Sci Rep; 2021 Jul; 11(1):14830. PubMed ID: 34290366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.
    Thulasi-Varma CV; Rao SS; Kumar CS; Gopi CV; Durga IK; Kim SK; Punnoose D; Kim HJ
    Dalton Trans; 2015 Nov; 44(44):19330-43. PubMed ID: 26497705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-temperature growth and dye-sensitized solar cells applications of flower-shaped ZnO hexagonal nanorods.
    Al-Hajry A
    J Nanosci Nanotechnol; 2010 Feb; 10(2):994-1000. PubMed ID: 20352747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.
    Mali SS; Patil PS; Hong CK
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1688-96. PubMed ID: 24383575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells.
    Meen TH; Jhuo YT; Chao SM; Lin NY; Ji LW; Tsai JK; Wu TC; Chen WR; Water W; Huang CJ
    Nanoscale Res Lett; 2012 Oct; 7(1):579. PubMed ID: 23092158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled Growth Cu
    Miao H; Wu Y; Zhou C; Yang Z; Kong C
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of optical properties on photovoltaic performance in dye-sensitized TiO2 nanocrystalline solar cells.
    Ji YJ; Zhang MD; Cui JH; Zheng HG; Zhu JJ
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3948-54. PubMed ID: 23862431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-performance x-ray source based on graphene oxide-coated Cu
    Zhang D; Zhang S; He K; Wang L; Sui F; Hong X; Li W; Li N; Jia M; Li W; Wang Z; Wang Z; Du B; Wei L; Feng Y; Zhong G; Li W; Chen J; Yang C; Chen M
    Nanotechnology; 2020 Nov; 31(48):485202. PubMed ID: 32931468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.