These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 25247177)
1. Soil fungal resources in annual cropping systems and their potential for management. Ellouze W; Esmaeili Taheri A; Bainard LD; Yang C; Bazghaleh N; Navarro-Borrell A; Hanson K; Hamel C Biomed Res Int; 2014; 2014():531824. PubMed ID: 25247177 [TBL] [Abstract][Full Text] [Related]
2. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Jalloh AA; Mutyambai DM; Yusuf AA; Subramanian S; Khamis F Sci Rep; 2024 Jun; 14(1):14355. PubMed ID: 38906908 [TBL] [Abstract][Full Text] [Related]
3. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Tan Y; Cui Y; Li H; Kuang A; Li X; Wei Y; Ji X Microbiol Res; 2017 Jan; 194():10-19. PubMed ID: 27938858 [TBL] [Abstract][Full Text] [Related]
4. Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Long-Term Fertilization in the Wheat Rhizosphere and Root Endosphere. Ma Y; Zhang H; Wang D; Guo X; Yang T; Xiang X; Walder F; Chu H Appl Environ Microbiol; 2021 Aug; 87(17):e0034921. PubMed ID: 34160265 [TBL] [Abstract][Full Text] [Related]
5. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. Jie W; Liu X; Cai B PLoS One; 2013; 8(8):e72898. PubMed ID: 23977368 [TBL] [Abstract][Full Text] [Related]
6. Impact of land use history on the arbuscular mycorrhizal fungal diversity in arid soils of Argentinean farming fields. Ontivero RE; Voyron S; Allione LVR; Bianco P; Bianciotto V; Iriarte HJ; Lugo MA; Lumini E FEMS Microbiol Lett; 2020 Jul; 367(14):. PubMed ID: 32648900 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China. Hu J; Yang A; Zhu A; Wang J; Dai J; Wong MH; Lin X J Microbiol; 2015 Jul; 53(7):454-61. PubMed ID: 26115994 [TBL] [Abstract][Full Text] [Related]
8. Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. Hilton S; Bennett AJ; Keane G; Bending GD; Chandler D; Stobart R; Mills P PLoS One; 2013; 8(4):e59859. PubMed ID: 23573215 [TBL] [Abstract][Full Text] [Related]
9. Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems. Oruru MB; Njeru EM Biomed Res Int; 2016; 2016():4376240. PubMed ID: 26942194 [TBL] [Abstract][Full Text] [Related]
10. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Wang S; Cheng J; Li T; Liao Y Sci Rep; 2020 Nov; 10(1):19911. PubMed ID: 33199813 [TBL] [Abstract][Full Text] [Related]
11. Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Gosling P; Jones J; Bending GD Mycorrhiza; 2016 Jan; 26(1):77-83. PubMed ID: 26100128 [TBL] [Abstract][Full Text] [Related]
12. Harnessing the plant microbiome to promote the growth of agricultural crops. Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987 [TBL] [Abstract][Full Text] [Related]
14. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. Song X; Pan Y; Li L; Wu X; Wang Y PLoS One; 2018; 13(3):e0193811. PubMed ID: 29538438 [TBL] [Abstract][Full Text] [Related]
15. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment. Peng Z; Johnson NC; Jansa J; Han J; Fang Z; Zhang Y; Jiang S; Xi H; Mao L; Pan J; Zhang Q; Feng H; Fan T; Zhang J; Liu Y New Phytol; 2024 May; 242(4):1798-1813. PubMed ID: 38155454 [TBL] [Abstract][Full Text] [Related]
16. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Hontoria C; García-González I; Quemada M; Roldán A; Alguacil MM Sci Total Environ; 2019 Apr; 660():913-922. PubMed ID: 30743976 [TBL] [Abstract][Full Text] [Related]
17. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. Zhou L; Wang Y; Xie Z; Zhang Y; Malhi SS; Guo Z; Qiu Y; Wang L J Basic Microbiol; 2018 Oct; 58(10):892-901. PubMed ID: 30101457 [TBL] [Abstract][Full Text] [Related]
18. Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Benitez MS; Osborne SL; Lehman RM Sci Rep; 2017 Nov; 7(1):15709. PubMed ID: 29146930 [TBL] [Abstract][Full Text] [Related]
19. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil. Vestberg M; Saari K; Kukkonen S; Hurme T Mycorrhiza; 2005 Sep; 15(6):447-58. PubMed ID: 16133257 [TBL] [Abstract][Full Text] [Related]
20. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]