These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25247179)

  • 1. Human locomotion under reduced gravity conditions: biomechanical and neurophysiological considerations.
    Sylos-Labini F; Lacquaniti F; Ivanenko YP
    Biomed Res Int; 2014; 2014():547242. PubMed ID: 25247179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human muscle activity and lower limb biomechanics of overground walking at varying levels of simulated reduced gravity and gait speeds.
    MacLean MK; Ferris DP
    PLoS One; 2021; 16(7):e0253467. PubMed ID: 34260611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait transitions in simulated reduced gravity.
    Ivanenko YP; Labini FS; Cappellini G; Macellari V; McIntyre J; Lacquaniti F
    J Appl Physiol (1985); 2011 Mar; 110(3):781-8. PubMed ID: 21212248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of gait kinematics in different simulators of reduced gravity.
    Sylos-Labini F; Ivanenko YP; Cappellini G; Portone A; MacLellan MJ; Lacquaniti F
    J Mot Behav; 2013; 45(6):495-505. PubMed ID: 24079466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invariant aspects of human locomotion in different gravitational environments.
    Minetti AE
    Acta Astronaut; 2001; 49(3-10):191-8. PubMed ID: 11669109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor patterns during walking on a slippery walkway.
    Cappellini G; Ivanenko YP; Dominici N; Poppele RE; Lacquaniti F
    J Neurophysiol; 2010 Feb; 103(2):746-60. PubMed ID: 19955283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic activities of lower limbs with body weight support ratio.
    Kuno H; Yamamoto N; Kurokawa N; Yamamoto T; Tagawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4800-3. PubMed ID: 23367001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth changes in the EMG patterns during gait transitions under body weight unloading.
    Labini FS; Ivanenko YP; Cappellini G; Gravano S; Lacquaniti F
    J Neurophysiol; 2011 Sep; 106(3):1525-36. PubMed ID: 21697441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of muscles to terminal-swing knee motions vary with walking speed.
    Arnold AS; Schwartz MH; Thelen DG; Delp SL
    J Biomech; 2007; 40(16):3660-71. PubMed ID: 17659289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of dynamic stability during adaptation to gait termination on a slippery surface.
    Oates AR; Frank JS; Patla AE
    Exp Brain Res; 2010 Feb; 201(1):47-57. PubMed ID: 19834697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skipping vs. running as the bipedal gait of choice in hypogravity.
    Pavei G; Biancardi CM; Minetti AE
    J Appl Physiol (1985); 2015 Jul; 119(1):93-100. PubMed ID: 25930029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
    Ivanenko YP; Grasso R; Macellari V; Lacquaniti F
    J Neurophysiol; 2002 Jun; 87(6):3070-89. PubMed ID: 12037209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion.
    Saunders SW; Schache A; Rath D; Hodges PW
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):784-93. PubMed ID: 15975698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.