These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 25247368)

  • 21. In search of more robust decoding algorithms for neural prostheses, a data driven approach.
    Subasi E; Townsend B; Scherberger H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4172-5. PubMed ID: 21096886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intra-cortical brain-machine interfaces for controlling upper-limb powered muscle and robotic systems in spinal cord injury.
    Fatima N; Shuaib A; Saqqur M
    Clin Neurol Neurosurg; 2020 Sep; 196():106069. PubMed ID: 32682223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical and subcortical mechanisms of brain-machine interfaces.
    Marchesotti S; Martuzzi R; Schurger A; Blefari ML; Del Millán JR; Bleuler H; Blanke O
    Hum Brain Mapp; 2017 Jun; 38(6):2971-2989. PubMed ID: 28321973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decoding of cortex-wide brain activity from local recordings of neural potentials.
    Liu X; Ren C; Huang Z; Wilson M; Kim JH; Lu Y; Ramezani M; Komiyama T; Kuzum D
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34706356
    [No Abstract]   [Full Text] [Related]  

  • 25. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 26. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.
    Flint RD; Scheid MR; Wright ZA; Solla SA; Slutzky MW
    J Neurosci; 2016 Mar; 36(12):3623-32. PubMed ID: 27013690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural control of motor prostheses.
    Scherberger H
    Curr Opin Neurobiol; 2009 Dec; 19(6):629-33. PubMed ID: 19896364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preserved cortical somatotopic and motor representations in tetraplegic humans.
    Andersen RA; Aflalo T
    Curr Opin Neurobiol; 2022 Jun; 74():102547. PubMed ID: 35533644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards neural co-processors for the brain: combining decoding and encoding in brain-computer interfaces.
    Rao RP
    Curr Opin Neurobiol; 2019 Apr; 55():142-151. PubMed ID: 30954862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding hand gestures from primary somatosensory cortex using high-density ECoG.
    Branco MP; Freudenburg ZV; Aarnoutse EJ; Bleichner MG; Vansteensel MJ; Ramsey NF
    Neuroimage; 2017 Feb; 147():130-142. PubMed ID: 27926827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The science of neural interface systems.
    Hatsopoulos NG; Donoghue JP
    Annu Rev Neurosci; 2009; 32():249-66. PubMed ID: 19400719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prosthetic devices: challenges and implications of robotic implants and biological interfaces.
    Lai JC; Schoen MP; Perez Gracia A; Naidu DS; Leung SW
    Proc Inst Mech Eng H; 2007 Feb; 221(2):173-83. PubMed ID: 17385571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding methods for neural prostheses: where have we reached?
    Li Z
    Front Syst Neurosci; 2014; 8():129. PubMed ID: 25076875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of Brain-Machine Interfaces Used in Neural Prosthetics with New Perspective on Somatosensory Feedback through Method of Signal Breakdown.
    Vidal GW; Rynes ML; Kelliher Z; Goodwin SJ
    Scientifica (Cairo); 2016; 2016():8956432. PubMed ID: 27313959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.
    Fukuma R; Yanagisawa T; Yorifuji S; Kato R; Yokoi H; Hirata M; Saitoh Y; Kishima H; Kamitani Y; Yoshimine T
    PLoS One; 2015; 10(7):e0131547. PubMed ID: 26134845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-machine interfaces: past, present and future.
    Lebedev MA; Nicolelis MA
    Trends Neurosci; 2006 Sep; 29(9):536-46. PubMed ID: 16859758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive offset correction for intracortical brain-computer interfaces.
    Homer ML; Perge JA; Black MJ; Harrison MT; Cash SS; Hochberg LR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):239-48. PubMed ID: 24196868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in neuroprosthetic learning and control.
    Carmena JM
    PLoS Biol; 2013; 11(5):e1001561. PubMed ID: 23700383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From thought to action: The brain-machine interface in posterior parietal cortex.
    Andersen RA; Aflalo T; Kellis S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26274-26279. PubMed ID: 31871144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.