These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 25247368)

  • 41. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motor-commands decoding using peripheral nerve signals: a review.
    Hong KS; Aziz N; Ghafoor U
    J Neural Eng; 2018 Jun; 15(3):031004. PubMed ID: 29498358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brain implants for substituting lost motor function: state of the art and potential impact on the lives of motor-impaired seniors.
    Ramsey NF; Aarnoutse EJ; Vansteensel MJ
    Gerontology; 2014; 60(4):366-72. PubMed ID: 24642607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
    Kraus D; Naros G; Bauer R; Leão MT; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jan; 125():522-532. PubMed ID: 26505298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new approach of multi-d.o.f. prosthetic control.
    Magenes G; Passaglia F; Secco EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3443-6. PubMed ID: 19163449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics.
    Niketeghad S; Pouratian N
    Neurotherapeutics; 2019 Jan; 16(1):134-143. PubMed ID: 30194614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
    DePass M; Falaki A; Quessy S; Dancause N; Cos I
    J Neurophysiol; 2022 May; 127(5):1348-1362. PubMed ID: 35171745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
    Vato A; Szymanski FD; Semprini M; Mussa-Ivaldi FA; Panzeri S
    PLoS One; 2014; 9(3):e91677. PubMed ID: 24626393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards a non-invasive brain-machine interface system to restore gait function in humans.
    Presacco A; Forrester L; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4588-91. PubMed ID: 22255359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hand-in-hand advances in biomedical engineering and sensorimotor restoration.
    Pisotta I; Perruchoud D; Ionta S
    J Neurosci Methods; 2015 May; 246():22-9. PubMed ID: 25769276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.
    Greenwald E; Masters MR; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):1-17. PubMed ID: 26753776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.
    Ron-Angevin R; Velasco-Álvarez F; Fernández-Rodríguez Á; Díaz-Estrella A; Blanca-Mena MJ; Vizcaíno-Martín FJ
    J Neuroeng Rehabil; 2017 May; 14(1):49. PubMed ID: 28558741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics.
    Heng W; Solomon S; Gao W
    Adv Mater; 2022 Apr; 34(16):e2107902. PubMed ID: 34897836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiological properties of brain-machine interface input signals.
    Slutzky MW; Flint RD
    J Neurophysiol; 2017 Aug; 118(2):1329-1343. PubMed ID: 28615329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous decoding of human grasp kinematics using epidural and subdural signals.
    Flint RD; Rosenow JM; Tate MC; Slutzky MW
    J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Moving minds: ethical aspects of neural motor prostheses.
    Clausen J
    Biotechnol J; 2008 Dec; 3(12):1493-501. PubMed ID: 19072905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sense of agency for intracortical brain-machine interfaces.
    Serino A; Bockbrader M; Bertoni T; Colachis Iv S; Solcà M; Dunlap C; Eipel K; Ganzer P; Annetta N; Sharma G; Orepic P; Friedenberg D; Sederberg P; Faivre N; Rezai A; Blanke O
    Nat Hum Behav; 2022 Apr; 6(4):565-578. PubMed ID: 35046522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.