These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25247589)

  • 1. Seasonal changes in predator community switch the direction of selection for prey defences.
    Mappes J; Kokko H; Ojala K; Lindström L
    Nat Commun; 2014 Sep; 5():5016. PubMed ID: 25247589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variations in bird selection pressure on prey colouration.
    Zvereva EL; Kozlov MV
    Oecologia; 2021 Aug; 196(4):1017-1026. PubMed ID: 34322748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent predation risk in tree-feeding insects with different colouration strategies: a field experiment.
    Remmel T; Tammaru T
    J Anim Ecol; 2009 Sep; 78(5):973-80. PubMed ID: 19493131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights.
    Puurtinen M; Kaitala V
    Evolution; 2006 Nov; 60(11):2246-56. PubMed ID: 17236418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased predation of nutrient-enriched aposematic prey.
    Halpin CG; Skelhorn J; Rowe C
    Proc Biol Sci; 2014 Apr; 281(1781):20133255. PubMed ID: 24598424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspective: the evolution of warning coloration is not paradoxical.
    Marples NM; Kelly DJ; Thomas RJ
    Evolution; 2005 May; 59(5):933-40. PubMed ID: 16136793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of color variation in dragon lizards: quantitative tests of the role of crypsis and local adaptation.
    Stuart-Fox DM; Moussalli A; Johnston GR; Owens IP
    Evolution; 2004 Jul; 58(7):1549-59. PubMed ID: 15341157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong antiapostatic selection against novel rare aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9181-4. PubMed ID: 11459937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does predation maintain eyespot plasticity in Bicyclus anynana?
    Lyytinen A; Brakefield PM; Lindström L; Mappes J
    Proc Biol Sci; 2004 Feb; 271(1536):279-83. PubMed ID: 15058439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal warning signals for a multiple predator world.
    Ratcliffe JM; Nydam ML
    Nature; 2008 Sep; 455(7209):96-9. PubMed ID: 18769439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predation risk estimated on live and artificial insect prey follows different patterns.
    Zvereva EL; Kozlov MV
    Ecology; 2023 Mar; 104(3):e3943. PubMed ID: 36477626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator selection on multicomponent warning signals in an aposematic moth.
    Hämäläinen L; Binns GE; Hart NS; Mappes J; McDonald PG; O'Neill LG; Rowland HM; Umbers KDL; Herberstein ME
    Behav Ecol; 2024; 35(1):arad097. PubMed ID: 38550303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the higher importance of signal size over body size in aposematic signaling in insects.
    Remmel T; Tammarub T
    J Insect Sci; 2011; 11():4. PubMed ID: 21521142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva.
    Tullberg BS; Merilaita S; Wiklund C
    Proc Biol Sci; 2005 Jul; 272(1570):1315-21. PubMed ID: 16006332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth.
    Rönkä K; Valkonen JK; Nokelainen O; Rojas B; Gordon S; Burdfield-Steel E; Mappes J
    Ecol Lett; 2020 Nov; 23(11):1654-1663. PubMed ID: 32881319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator mixes and the conspicuousness of aposematic signals.
    Endler JA; Mappes J
    Am Nat; 2004 Apr; 163(4):532-47. PubMed ID: 15122501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars.
    Grant JB
    J Anim Ecol; 2007 May; 76(3):439-47. PubMed ID: 17439461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predatory birds and ants partition caterpillar prey by body size and diet breadth.
    Singer MS; Clark RE; Lichter-Marck IH; Johnson ER; Mooney KA
    J Anim Ecol; 2017 Oct; 86(6):1363-1371. PubMed ID: 28686298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini.
    McClure M; Clerc C; Desbois C; Meichanetzoglou A; Cau M; Bastin-Héline L; Bacigalupo J; Houssin C; Pinna C; Nay B; Llaurens V; Berthier S; Andraud C; Gomez D; Elias M
    Proc Biol Sci; 2019 Apr; 286(1901):20182769. PubMed ID: 30991931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prey with hidden colour defences benefit from their similarity to aposematic signals.
    Kim Y; Hwang Y; Bae S; Sherratt TN; An J; Choi SW; Miller JC; Kang C
    Proc Biol Sci; 2020 Sep; 287(1934):20201894. PubMed ID: 32900312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.