BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 25247697)

  • 41. Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity.
    Moreb EA; Lynch MD
    Nat Commun; 2021 Aug; 12(1):5034. PubMed ID: 34413309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo.
    Fu BX; St Onge RP; Fire AZ; Smith JD
    Nucleic Acids Res; 2016 Jun; 44(11):5365-77. PubMed ID: 27198218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection of extended CRISPR RNAs with enhanced targeting and specificity.
    Herring-Nicholas A; Dimig H; Roesing MR; Josephs EA
    Commun Biol; 2024 Jan; 7(1):86. PubMed ID: 38212640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.
    Xie K; Minkenberg B; Yang Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3570-5. PubMed ID: 25733849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy.
    Chung CH; Allen AG; Atkins A; Link RW; Nonnemacher MR; Dampier W; Wigdahl B
    Front Cell Infect Microbiol; 2021; 11():593077. PubMed ID: 33768011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
    Prykhozhij SV; Rajan V; Gaston D; Berman JN
    PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Internal guide RNA interactions interfere with Cas9-mediated cleavage.
    Thyme SB; Akhmetova L; Montague TG; Valen E; Schier AF
    Nat Commun; 2016 Jun; 7():11750. PubMed ID: 27282953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA; Hutmacher M; Lynch MD
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of CRISPR/Cas9 Guide RNA Efficiency and Specificity Against Genetically Diverse HIV-1 Isolates.
    Sessions KJ; Chen YY; Hodge CA; Hudson TR; Eszterhas SK; Hayden MS; Howell AL
    AIDS Res Hum Retroviruses; 2020 Oct; 36(10):862-874. PubMed ID: 32640832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.
    Xiang X; Corsi GI; Anthon C; Qu K; Pan X; Liang X; Han P; Dong Z; Liu L; Zhong J; Ma T; Wang J; Zhang X; Jiang H; Xu F; Liu X; Xu X; Wang J; Yang H; Bolund L; Church GM; Lin L; Gorodkin J; Luo Y
    Nat Commun; 2021 May; 12(1):3238. PubMed ID: 34050182
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9.
    Okada K; Aoki K; Tabei T; Sugio K; Imai K; Bonkohara Y; Kamachi Y
    Nucleic Acids Res; 2022 Mar; 50(5):2854-2871. PubMed ID: 35166844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broad-Spectrum and Personalized Guide RNAs for CRISPR/Cas9 HIV-1 Therapeutics.
    Dampier W; Sullivan NT; Mell JC; Pirrone V; Ehrlich GD; Chung CH; Allen AG; DeSimone M; Zhong W; Kercher K; Passic S; Williams JW; Szep Z; Khalili K; Jacobson JM; Nonnemacher MR; Wigdahl B
    AIDS Res Hum Retroviruses; 2018 Nov; 34(11):950-960. PubMed ID: 29968495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA.
    Selkova P; Vasileva A; Pobegalov G; Musharova O; Arseniev A; Kazalov M; Zyubko T; Shcheglova N; Artamonova T; Khodorkovskii M; Severinov K; Fedorova I
    RNA Biol; 2020 Oct; 17(10):1472-1479. PubMed ID: 32564655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
    Donohoue PD; Pacesa M; Lau E; Vidal B; Irby MJ; Nyer DB; Rotstein T; Banh L; Toh MS; Gibson J; Kohrs B; Baek K; Owen ALG; Slorach EM; van Overbeek M; Fuller CK; May AP; Jinek M; Cameron P
    Mol Cell; 2021 Sep; 81(17):3637-3649.e5. PubMed ID: 34478654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9.
    Kim DH; Lee J; Suh Y; Lee K
    Mol Biotechnol; 2021 Feb; 63(2):140-149. PubMed ID: 33386580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR/Cas9 mediated high efficiency knockout of the eye color gene Vermillion in Helicoverpa zea (Boddie).
    Perera OP; Little NS; Pierce CA
    PLoS One; 2018; 13(5):e0197567. PubMed ID: 29771955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.
    Tycko J; Myer VE; Hsu PD
    Mol Cell; 2016 Aug; 63(3):355-70. PubMed ID: 27494557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.