BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25247724)

  • 1. Modulus-dependent characteristics of Wharton's jelly mesenchymal stem cells (WJMSC) encapsulated in hydrogel microspheres.
    Ramesh A; Kanafi MM; Bhonde RR
    J Biomater Sci Polym Ed; 2014; 25(17):1946-61. PubMed ID: 25247724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the role of alginate containing high guluronic acid on osteogenic differentiation capacity of human umbilical cord Wharton's jelly mesenchymal stem cells.
    Bijan Nejad D; Azandeh S; Habibi R; Mansouri E; Bayati V; Ahmadi Angali K
    J Microencapsul; 2017 Dec; 34(8):732-743. PubMed ID: 29053065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
    Ansari S; Sarrion P; Hasani-Sadrabadi MM; Aghaloo T; Wu BM; Moshaverinia A
    J Biomed Mater Res A; 2017 Nov; 105(11):2957-2967. PubMed ID: 28639378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.
    Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V
    J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.
    Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C
    Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties.
    Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C
    Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells.
    Canha-Gouveia A; Rita Costa-Pinto A; Martins AM; Silva NA; Faria S; Sousa RA; Salgado AJ; Sousa N; Reis RL; Neves NM
    Biofabrication; 2015 Sep; 7(3):035009. PubMed ID: 26335618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds.
    Bagher Z; Ebrahimi-Barough S; Azami M; Safa M; Joghataei MT
    J Biomed Mater Res A; 2016 Jan; 104(1):218-26. PubMed ID: 26265047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.
    Bagher Z; Azami M; Ebrahimi-Barough S; Mirzadeh H; Solouk A; Soleimani M; Ai J; Nourani MR; Joghataei MT
    Mol Neurobiol; 2016 May; 53(4):2397-408. PubMed ID: 26001761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads.
    Vecchiatini R; Penolazzi L; Lambertini E; Angelozzi M; Morganti C; Mazzitelli S; Trombelli L; Nastruzzi C; Piva R
    J Periodontal Res; 2015 Aug; 50(4):544-53. PubMed ID: 25251713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.
    Seo MS; Park SB; Kang KS
    Cell Transplant; 2012; 21(7):1493-502. PubMed ID: 22732242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential mechanisms underlying ectodermal differentiation of Wharton's jelly mesenchymal stem cells.
    Jadalannagari S; Berry AM; Hopkins RA; Bhavsar D; Aljitawi OS
    Biochem Biophys Res Commun; 2016 Sep; 478(2):831-7. PubMed ID: 27501759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors.
    Mechiche Alami S; Rammal H; Boulagnon-Rombi C; Velard F; Lazar F; Drevet R; Laurent Maquin D; Gangloff SC; Hemmerlé J; Voegel JC; Francius G; Schaaf P; Boulmedais F; Kerdjoudj H
    Acta Biomater; 2017 Feb; 49():575-589. PubMed ID: 27888100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering.
    Dan P; Velot É; Francius G; Menu P; Decot V
    Acta Biomater; 2017 Jan; 48():227-237. PubMed ID: 27769940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A xeno-free culture method that enhances Wharton's jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures.
    Julavijitphong S; Wichitwiengrat S; Tirawanchai N; Ruangvutilert P; Vantanasiri C; Phermthai T
    Cytotherapy; 2014 May; 16(5):683-91. PubMed ID: 24119645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of substrate stiffness on differentiation of umbilical cord stem cells.
    Witkowska-Zimny M; Walenko K; Wałkiewicz AE; Pojda Z; Przybylski J; Lewandowska-Szumieł M
    Acta Biochim Pol; 2012; 59(2):261-4. PubMed ID: 22577624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting.
    Chen YW; Shen YF; Ho CC; Yu J; Wu YA; Wang K; Shih CT; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():679-687. PubMed ID: 30033302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating CK19-positive cells with hair-like structures from Wharton's jelly mesenchymal stromal cells.
    Aljitawi OS; Xiao Y; Zhang D; Stehno-Bittel L; Garimella R; Hopkins RA; Detamore MS
    Stem Cells Dev; 2013 Jan; 22(1):18-26. PubMed ID: 22970796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.
    Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y
    J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of Gelatin Microspheres Loaded with Wharton's Jelly Derived Mesenchymal Stem Cells Facilitates Cartilage Repair in Mice.
    Chen X; Huang S; Niu Y; Luo M; Liu H; Jiao Y; Huang J
    Tissue Eng Regen Med; 2024 Jan; 21(1):171-183. PubMed ID: 37688747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.