BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

805 related articles for article (PubMed ID: 25247890)

  • 21. Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties.
    Doherty CM; Buso D; Hill AJ; Furukawa S; Kitagawa S; Falcaro P
    Acc Chem Res; 2014 Feb; 47(2):396-405. PubMed ID: 24205847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zeolitic imidazolate framework (ZIF)-derived, hollow-core, nitrogen-doped carbon nanostructures for oxygen-reduction reactions in PEFCs.
    Palaniselvam T; Biswal BP; Banerjee R; Kurungot S
    Chemistry; 2013 Jul; 19(28):9335-42. PubMed ID: 23716305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance.
    Zahmakiran M
    Dalton Trans; 2012 Nov; 41(41):12690-6. PubMed ID: 22961286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions.
    Zhang F; Wei Y; Wu X; Jiang H; Wang W; Li H
    J Am Chem Soc; 2014 Oct; 136(40):13963-6. PubMed ID: 25255467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies.
    Zhuang J; Chou LY; Sneed BT; Cao Y; Hu P; Feng L; Tsung CK
    Small; 2015 Nov; 11(41):5551-5. PubMed ID: 26344934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8.
    Zhang C; Han C; Sholl DS; Schmidt JR
    J Phys Chem Lett; 2016 Feb; 7(3):459-64. PubMed ID: 26771275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using a Multi-Shelled Hollow Metal-Organic Framework as a Host to Switch the Guest-to-Host and Guest-to-Guest Interactions.
    Liu XY; Zhang F; Goh TW; Li Y; Shao YC; Luo L; Huang W; Long YT; Chou LY; Tsung CK
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2110-2114. PubMed ID: 29266678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Organic Framework (MOF) Nanorods, Nanotubes, and Nanowires.
    Arbulu RC; Jiang YB; Peterson EJ; Qin Y
    Angew Chem Int Ed Engl; 2018 May; 57(20):5813-5817. PubMed ID: 29534328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalysis by metal-organic frameworks: fundamentals and opportunities.
    Ranocchiari M; van Bokhoven JA
    Phys Chem Chem Phys; 2011 Apr; 13(14):6388-96. PubMed ID: 21234497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Well-Defined Metal-Organic-Framework Hollow Nanostructures for Catalytic Reactions Involving Gases.
    Xu X; Zhang Z; Wang X
    Adv Mater; 2015 Sep; 27(36):5365-71. PubMed ID: 26172949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Smart Route for Encapsulating Pd Nanoparticles into a ZIF-8 Hollow Microsphere and Their Superior Catalytic Properties.
    Zhao Y; Ni X; Ye S; Gu ZG; Li Y; Ngai T
    Langmuir; 2020 Mar; 36(8):2037-2043. PubMed ID: 32036667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-shelled Hollow Metal-Organic Frameworks.
    Liu W; Huang J; Yang Q; Wang S; Sun X; Zhang W; Liu J; Huo F
    Angew Chem Int Ed Engl; 2017 May; 56(20):5512-5516. PubMed ID: 28334498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.
    Doonan C; Riccò R; Liang K; Bradshaw D; Falcaro P
    Acc Chem Res; 2017 Jun; 50(6):1423-1432. PubMed ID: 28489346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.
    Liu J; Chen L; Cui H; Zhang J; Zhang L; Su CY
    Chem Soc Rev; 2014 Aug; 43(16):6011-61. PubMed ID: 24871268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.
    Sasidharan M; Nakashima K
    Acc Chem Res; 2014 Jan; 47(1):157-67. PubMed ID: 23962222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile Synthesis of Enzyme-Embedded Metal-Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent.
    Wang Y; Zhang N; Tan D; Qi Z; Wu C
    Front Bioeng Biotechnol; 2020; 8():714. PubMed ID: 32733866
    [No Abstract]   [Full Text] [Related]  

  • 40. Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications.
    Cai ZX; Wang ZL; Kim J; Yamauchi Y
    Adv Mater; 2019 Mar; 31(11):e1804903. PubMed ID: 30637804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.