These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25248084)

  • 1. U-processes and preference learning.
    Li H; Ren C; Li L
    Neural Comput; 2014 Dec; 26(12):2896-924. PubMed ID: 25248084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined rademacher chaos complexity bounds with applications to the multikernel learning problem.
    Lei Y; Ding L
    Neural Comput; 2014 Apr; 26(4):739-60. PubMed ID: 24479777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rademacher chaos complexities for learning the kernel problem.
    Ying Y; Campbell C
    Neural Comput; 2010 Nov; 22(11):2858-86. PubMed ID: 20804384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A discriminative learning framework with pairwise constraints for video object classification.
    Yan R; Zhang J; Yang J; Hauptmann AG
    IEEE Trans Pattern Anal Mach Intell; 2006 Apr; 28(4):578-93. PubMed ID: 16566507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training Lp norm multiple kernel learning in the primal.
    Liang Z; Xia S; Zhou Y; Zhang L
    Neural Netw; 2013 Oct; 46():172-82. PubMed ID: 23770740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise tolerance under risk minimization.
    Manwani N; Sastry PS
    IEEE Trans Cybern; 2013 Jun; 43(3):1146-51. PubMed ID: 23193242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordering and finding the best of K > 2 supervised learning algorithms.
    Yildiz OT; Alpaydin E
    IEEE Trans Pattern Anal Mach Intell; 2006 Mar; 28(3):392-402. PubMed ID: 16526425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scalable kernel-based semisupervised metric learning algorithm with out-of-sample generalization ability.
    Yeung DY; Chang H; Dai G
    Neural Comput; 2008 Nov; 20(11):2839-61. PubMed ID: 18439136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning kernels from biological networks by maximizing entropy.
    Tsuda K; Noble WS
    Bioinformatics; 2004 Aug; 20 Suppl 1():i326-33. PubMed ID: 15262816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiments with AdaBoost.RT, an improved boosting scheme for regression.
    Shrestha DL; Solomatine DP
    Neural Comput; 2006 Jul; 18(7):1678-710. PubMed ID: 16764518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised learning based on high density region estimation.
    Chen H; Li L; Peng J
    Neural Netw; 2010 Sep; 23(7):812-8. PubMed ID: 20605081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial distortion entropy maximization for online data clustering.
    Takizawa H; Kobayashi H
    Neural Netw; 2007 Sep; 20(7):819-31. PubMed ID: 17683903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph-based semisupervised learning.
    Culp M; Michailidis G
    IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):174-9. PubMed ID: 18000333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information geometry of U-Boost and Bregman divergence.
    Murata N; Takenouchi T; Kanamori T; Eguchi S
    Neural Comput; 2004 Jul; 16(7):1437-81. PubMed ID: 15165397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-weighted Nyström method for computing large kernel eigensystems.
    Zhang K; Kwok JT
    Neural Comput; 2009 Jan; 21(1):121-46. PubMed ID: 19431280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.
    Verzi SJ; Heileman GL; Georgiopoulos M
    Neural Netw; 2006 May; 19(4):446-68. PubMed ID: 16343845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bregman divergences and surrogates for learning.
    Nock R; Nielsen F
    IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2048-59. PubMed ID: 19762930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active learning for noisy oracle via density power divergence.
    Sogawa Y; Ueno T; Kawahara Y; Washio T
    Neural Netw; 2013 Oct; 46():133-43. PubMed ID: 23728156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised learning of quantizer codebooks by information loss minimization.
    Lazebnik S; Raginsky M
    IEEE Trans Pattern Anal Mach Intell; 2009 Jul; 31(7):1294-309. PubMed ID: 19443926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on two methods for estimating missing pairwise preference values.
    Chiclana F; Herrera-Viedma E; Alonso S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1628-33. PubMed ID: 19556202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.