BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25248090)

  • 1. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications.
    Wang Z; Tammela P; Zhang P; Huo J; Ericson F; Strømme M; Nyholm L
    Nanoscale; 2014 Nov; 6(21):13068-75. PubMed ID: 25248090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances.
    Wang Z; Carlsson DO; Tammela P; Hua K; Zhang P; Nyholm L; Strømme M
    ACS Nano; 2015 Jul; 9(7):7563-71. PubMed ID: 26083393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance.
    Wang Z; Tammela P; Strømme M; Nyholm L
    Nanoscale; 2015 Feb; 7(8):3418-23. PubMed ID: 25630958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors.
    Cherusseri J; Kar KK
    Phys Chem Chem Phys; 2016 Mar; 18(12):8587-97. PubMed ID: 26946975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors.
    Fan Z; Zhu J; Sun X; Cheng Z; Liu Y; Wang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21763-21772. PubMed ID: 28605894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors.
    Parayangattil Jyothibasu J; Chen MZ; Lee RH
    ACS Omega; 2020 Mar; 5(12):6441-6451. PubMed ID: 32258879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity
    Chen Y; Lyu S; Han S; Chen Z; Wang W; Wang S
    RSC Adv; 2018 Nov; 8(70):39918-39928. PubMed ID: 35558219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Free-Standing Polymer Polypyrrole/Cellulose Composite Film via Spatial-Confined Interfacial Electrodeposition for Flexible Supercapacitors.
    Wang S; Chen W; Huang X; Chen X; Li D; Yu F; Chen Y
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a flexible porous polypyrrole film with a 3D micro-nanostructure and its electrochemical properties.
    Wang J; Cao J; Xu Y; An H; Li X
    Phys Chem Chem Phys; 2023 Apr; 25(15):10925-10934. PubMed ID: 37016800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors.
    Chen GF; Su YZ; Kuang PY; Liu ZQ; Chen DY; Wu X; Li N; Qiao SZ
    Chemistry; 2015 Mar; 21(12):4614-21. PubMed ID: 25572117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage.
    Bai MH; Bian LJ; Song Y; Liu XX
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12656-64. PubMed ID: 25010464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Three-Dimensional Nanostructured Conductive Polymer Hydrogels for Energy-Storage Applications.
    Yang C; Zhang P; Nautiyal A; Li S; Liu N; Yin J; Deng K; Zhang X
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4258-4267. PubMed ID: 30618232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors.
    Zhou J; Zhao H; Mu X; Chen J; Zhang P; Wang Y; He Y; Zhang Z; Pan X; Xie E
    Nanoscale; 2015 Sep; 7(35):14697-706. PubMed ID: 26280064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors.
    Dubal DP; Ballesteros B; Mohite AA; Gómez-Romero P
    ChemSusChem; 2017 Feb; 10(4):731-737. PubMed ID: 27897428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally doped polypyrrole nanotubes with sulfuric acid for flexible all-solid-state supercapacitors.
    Yang Z; Chen Z
    Nanotechnology; 2019 Jun; 30(24):245402. PubMed ID: 30822769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.
    Wang F; Zhan X; Cheng Z; Wang Z; Wang Q; Xu K; Safdar M; He J
    Small; 2015 Feb; 11(6):749-55. PubMed ID: 25273957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode.
    Huang ZH; Song Y; Xu XX; Liu XX
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25506-13. PubMed ID: 26509281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood.
    Nyström G; Mihranyan A; Razaq A; Lindström T; Nyholm L; Strømme M
    J Phys Chem B; 2010 Apr; 114(12):4178-82. PubMed ID: 20205378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor.
    Firoz Babu K; Siva Subramanian SP; Anbu Kulandainathan M
    Carbohydr Polym; 2013 Apr; 94(1):487-95. PubMed ID: 23544566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.