These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25248923)

  • 61. OligoPred: a web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition.
    Qiu JD; Suo SB; Sun XY; Shi SP; Liang RP
    J Mol Graph Model; 2011 Sep; 30():129-34. PubMed ID: 21802968
    [TBL] [Abstract][Full Text] [Related]  

  • 62. iPreny-PseAAC: Identify C-terminal Cysteine Prenylation Sites in Proteins by Incorporating Two Tiers of Sequence Couplings into PseAAC.
    Xu Y; Wang Z; Li C; Chou KC
    Med Chem; 2017; 13(6):544-551. PubMed ID: 28425870
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. iCrotoK-PseAAC: Identify lysine crotonylation sites by blending position relative statistical features according to the Chou's 5-step rule.
    Malebary SJ; Rehman MSU; Khan YD
    PLoS One; 2019; 14(11):e0223993. PubMed ID: 31751380
    [TBL] [Abstract][Full Text] [Related]  

  • 65. iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals.
    Cheng X; Zhao SG; Xiao X; Chou KC
    Oncotarget; 2017 Aug; 8(35):58494-58503. PubMed ID: 28938573
    [TBL] [Abstract][Full Text] [Related]  

  • 66. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. pSuc-PseRat: Predicting Lysine Succinylation in Proteins by Exploiting the Ratios of Sequence Coupling and Properties.
    Ai H; Wu R; Zhang L; Wu X; Ma J; Hu H; Huang L; Chen W; Zhao J; Liu H
    J Comput Biol; 2017 Oct; 24(10):1050-1059. PubMed ID: 28682641
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 69. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
    Chen Z; Zhou Y; Song J; Zhang Z
    Biochim Biophys Acta; 2013 Aug; 1834(8):1461-7. PubMed ID: 23603789
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 73. iACP: a sequence-based tool for identifying anticancer peptides.
    Chen W; Ding H; Feng P; Lin H; Chou KC
    Oncotarget; 2016 Mar; 7(13):16895-909. PubMed ID: 26942877
    [TBL] [Abstract][Full Text] [Related]  

  • 74. iDNA-Prot: identification of DNA binding proteins using random forest with grey model.
    Lin WZ; Fang JA; Xiao X; Chou KC
    PLoS One; 2011; 6(9):e24756. PubMed ID: 21935457
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prediction of carbamylated lysine sites based on the one-class k-nearest neighbor method.
    Huang G; Zhou Y; Zhang Y; Li BQ; Zhang N; Cai YD
    Mol Biosyst; 2013 Nov; 9(11):2729-40. PubMed ID: 24056952
    [TBL] [Abstract][Full Text] [Related]  

  • 76. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Aug; 360(2):339-45. PubMed ID: 17586467
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition.
    Shen HB; Chou KC
    Anal Biochem; 2008 Feb; 373(2):386-8. PubMed ID: 17976365
    [TBL] [Abstract][Full Text] [Related]  

  • 78. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.
    Cheng X; Zhao SG; Lin WZ; Xiao X; Chou KC
    Bioinformatics; 2017 Nov; 33(22):3524-3531. PubMed ID: 29036535
    [TBL] [Abstract][Full Text] [Related]  

  • 79. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest.
    Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H
    Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites.
    Zuo Y; Hong Y; Zeng X; Zhang Q; Liu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35953081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.