These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25248965)

  • 1. A first principles scanning tunneling potentiometry study of an opaque graphene grain boundary in the ballistic transport regime.
    Bevan KH
    Nanotechnology; 2014 Oct; 25(41):415701. PubMed ID: 25248965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic features in the electrochemical potential drop across a graphene grain boundary.
    Hoffmann-Vogel R
    Nanotechnology; 2014 Dec; 25(48):480501. PubMed ID: 25397732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Invasive Nanoscale Potentiometry and Ballistic Transport in Epigraphene Nanoribbons.
    De Cecco A; Prudkovskiy VS; Wander D; Ganguly R; Berger C; de Heer WA; Courtois H; Winkelmann CB
    Nano Lett; 2020 May; 20(5):3786-3790. PubMed ID: 32271586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.
    Settnes M; Power SR; Petersen DH; Jauho AP
    Phys Rev Lett; 2014 Mar; 112(9):096801. PubMed ID: 24655267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of random alloy fluctuations on inter-well transport in InGaN/GaN multi-quantum well systems: an atomistic non-equilibrium Green's function study.
    O'Donovan M; Luisier M; O'Reilly EP; Schulz S
    J Phys Condens Matter; 2020 Oct; 33(4):. PubMed ID: 32986018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale tight-binding simulations of quantum transport in ballistic graphene.
    Calogero G; Papior NR; Bøggild P; Brandbyge M
    J Phys Condens Matter; 2018 Sep; 30(36):364001. PubMed ID: 30061475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.
    Yu Z; Chen J; Zhang L; Wang J
    J Phys Condens Matter; 2013 Dec; 25(49):495302. PubMed ID: 24214776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile high resolution scanning tunneling potentiometry implementation.
    Druga T; Wenderoth M; Homoth J; Schneider MA; Ulbrich RG
    Rev Sci Instrum; 2010 Aug; 81(8):083704. PubMed ID: 20815610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry.
    Wang W; Munakata K; Rozler M; Beasley MR
    Phys Rev Lett; 2013 Jun; 110(23):236802. PubMed ID: 25167521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Nonequilibrium Green's Function Approach to Energy Conversion in Nanoscale Optoelectronics.
    Wu X; Wang R; Zou H; Song B; Wen S; Frauenheim T; Yam C
    J Chem Theory Comput; 2022 Sep; 18(9):5502-5512. PubMed ID: 36005397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance analysis and implementation of a scanning tunneling potentiometry setup: Toward low-noise and high-sensitivity measurements of the electrochemical potential.
    Marković T; Huang W; Gambardella P; Stepanow S
    Rev Sci Instrum; 2021 Oct; 92(10):103707. PubMed ID: 34717380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transport at surfaces and interfaces.
    Bobisch CA; Möller R
    Chimia (Aarau); 2012; 66(1-2):23-30. PubMed ID: 22546187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local potentiometry using a multiprobe scanning tunneling microscope.
    Bannani A; Bobisch CA; Möller R
    Rev Sci Instrum; 2008 Aug; 79(8):083704. PubMed ID: 19044354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach.
    Feliciano GT; Sanz-Navarro C; Coutinho-Neto MD; Ordejón P; Scheicher RH; Rocha AR
    J Phys Chem B; 2018 Jan; 122(2):485-492. PubMed ID: 28721724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids.
    Krebs ZJ; Behn WA; Li S; Smith KJ; Watanabe K; Taniguchi T; Levchenko A; Brar VW
    Science; 2023 Feb; 379(6633):671-676. PubMed ID: 36795831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study.
    Koepke JC; Wood JD; Estrada D; Ong ZY; He KT; Pop E; Lyding JW
    ACS Nano; 2013 Jan; 7(1):75-86. PubMed ID: 23237026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C58-dimers on Au(111).
    Wilhelm J; Walz M; Stendel M; Bagrets A; Evers F
    Phys Chem Chem Phys; 2013 May; 15(18):6684-90. PubMed ID: 23450169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Scale Characterization of Graphene p-n Junctions for Electron-Optical Applications.
    Zhou X; Kerelsky A; Elahi MM; Wang D; Habib KMM; Sajjad RN; Agnihotri P; Lee JU; Ghosh AW; Ross FM; Pasupathy AN
    ACS Nano; 2019 Feb; 13(2):2558-2566. PubMed ID: 30689949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the polarized quantum phonon transmission in graphene nanoribbons.
    Scuracchio P; Dobry A; Costamagna S; Peeters FM
    Nanotechnology; 2015 Jul; 26(30):305401. PubMed ID: 26150409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.
    Qian Z; Li R; Hou S; Xue Z; Sanvito S
    J Chem Phys; 2007 Nov; 127(19):194710. PubMed ID: 18035901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.