BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25249271)

  • 1. Thermal conductivity of a single Bi₀.₅Sb₁.₅Te₃ single-crystalline nanowire.
    Li L; Jin C; Xu S; Yang J; Du H; Li G
    Nanotechnology; 2014 Oct; 25(41):415704. PubMed ID: 25249271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal properties of bi nanowire arrays with different orientations and diameters.
    Zhu Y; Dou X; Huang X; Li L; Li G
    J Phys Chem B; 2006 Dec; 110(51):26189-93. PubMed ID: 17181275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice thermal conductivity crossovers in semiconductor nanowires.
    Mingo N; Broido DA
    Phys Rev Lett; 2004 Dec; 93(24):246106. PubMed ID: 15697834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.
    Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK
    Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sn-doped bismuth telluride nanowires with high conductivity.
    Mi G; Li L; Zhang Y; Zheng G
    Nanoscale; 2012 Oct; 4(20):6276-8. PubMed ID: 22990308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires.
    Kim J; Lee S; Brovman YM; Kim P; Lee W
    Nanoscale; 2015 Mar; 7(11):5053-9. PubMed ID: 25697788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diameter dependent thermoelectric properties of individual SnTe nanowires.
    Xu EZ; Li Z; Martinez JA; Sinitsyn N; Htoon H; Li N; Swartzentruber B; Hollingsworth JA; Wang J; Zhang SX
    Nanoscale; 2015 Feb; 7(7):2869-76. PubMed ID: 25623253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process.
    Lee J; Berger A; Cagnon L; Gösele U; Nielsch K; Lee J
    Phys Chem Chem Phys; 2010 Dec; 12(46):15247-50. PubMed ID: 21046022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires.
    Wang Z; Kojda D; Peranio N; Kroener M; Mitdank R; Toellner W; Nielsch K; Fischer SF; Gutsch S; Zacharias M; Eibl O; Woias P
    Nanotechnology; 2015 Mar; 26(12):125707. PubMed ID: 25743098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires.
    Lee S; Ham J; Jeon K; Noh JS; Lee W
    Nanotechnology; 2010 Oct; 21(40):405701. PubMed ID: 20823499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semimetal to semiconductor transition in Bi/TiO
    Kockert M; Mitdank R; Moon H; Kim J; Mogilatenko A; Moosavi SH; Kroener M; Woias P; Lee W; Fischer SF
    Nanoscale Adv; 2021 Jan; 3(1):263-271. PubMed ID: 36131884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects.
    Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT
    Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays.
    Xue FH; Fei GT; Wu B; Cui P; Zhang LD
    J Am Chem Soc; 2005 Nov; 127(44):15348-9. PubMed ID: 16262380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.