BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

922 related articles for article (PubMed ID: 25249381)

  • 1. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.
    Schmalz T; Pröbsting E; Auberger R; Siewert G
    Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and walking ability of KAFO users with the C-Brace
    Pröbsting E; Kannenberg A; Zacharias B
    Prosthet Orthot Int; 2017 Feb; 41(1):65-77. PubMed ID: 27151648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of orthoses in the treatment of idiopathic toe walking: A randomized controlled trial.
    Herrin K; Geil M
    Prosthet Orthot Int; 2016 Apr; 40(2):262-9. PubMed ID: 25628380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis.
    Arazpour M; Ahmadi F; Bahramizadeh M; Samadian M; Mousavi ME; Bani MA; Hutchins SW
    Prosthet Orthot Int; 2016 Dec; 40(6):689-695. PubMed ID: 26269446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M; Moradi A; Samadian M; Bahramizadeh M; Joghtaei M; Ahmadi Bani M; Hutchins SW; Mardani MA
    Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait of stance control orthosis users: the dynamic knee brace system.
    Irby SE; Bernhardt KA; Kaufman KR
    Prosthet Orthot Int; 2005 Dec; 29(3):269-82. PubMed ID: 16466156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking.
    Andrysek J; Klejman S; Kooy J
    J Appl Biomech; 2013 Aug; 29(4):474-80. PubMed ID: 23182738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ankle-foot orthosis plantarflexion stiffness on ankle and knee joint kinematics and kinetics during first and second rockers of gait in individuals with stroke.
    Singer ML; Kobayashi T; Lincoln LS; Orendurff MS; Foreman KB
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):1077-80. PubMed ID: 25241248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW
    Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review.
    Rafiaei M; Bahramizadeh M; Arazpour M; Samadian M; Hutchins SW; Farahmand F; Mardani MA
    Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients.
    Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of floor reaction ankle-foot orthosis on crouch gait in patients with cerebral palsy: What can be expected?
    Böhm H; Matthias H; Braatz F; Döderlein L
    Prosthet Orthot Int; 2018 Jun; 42(3):245-253. PubMed ID: 28693377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.