These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2525040)
1. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate. Dykens JA; Sullivan SG; Stern A Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040 [TBL] [Abstract][Full Text] [Related]
2. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Dykens JA; Sullivan SG; Stern A Biochem Pharmacol; 1987 Jan; 36(2):211-7. PubMed ID: 2949752 [TBL] [Abstract][Full Text] [Related]
3. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells. Sullivan SG; Stern A Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of gluconeogenesis in rat renal cortex slices by metabolites of L-tryptophan in vitro. Endou H; Reuter E; Weber HJ Naunyn Schmiedebergs Arch Pharmacol; 1975; 287(3):297-308. PubMed ID: 1153021 [TBL] [Abstract][Full Text] [Related]
5. Tryptophan and glucose metabolism in rat liver cells. The effects of DL-6-chlorotryptophan, 4-chloro-3-hydroxyanthranilate and pyrazinamide. Cook JS; Pogson CI Biochem J; 1983 Aug; 214(2):511-6. PubMed ID: 6688524 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of aromatic thiols in the human red blood cell. Amrolia P; Sullivan SG; Stern A; Munday R J Appl Toxicol; 1989 Apr; 9(2):113-8. PubMed ID: 2715566 [TBL] [Abstract][Full Text] [Related]
7. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate. Sullivan SG; Stern A Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859 [TBL] [Abstract][Full Text] [Related]
8. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Ogasawara Y; Funakoshi M; Ishii K Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836 [TBL] [Abstract][Full Text] [Related]
9. Fasciola hepatica: inhibition of phosphoenolpyruvate carboxykinase, and end-product formation by quinolinic acid and 3-mercaptopicolinic acid. Lloyd GM; Barrett J Exp Parasitol; 1983 Oct; 56(2):259-65. PubMed ID: 6225676 [TBL] [Abstract][Full Text] [Related]
10. Effects of 1,4-naphthoquinone derivatives on red blood cell metabolism. Kruger-Zeitzer E; Sullivan SG; Stern A; Munday R J Appl Toxicol; 1990 Apr; 10(2):129-33. PubMed ID: 2362079 [TBL] [Abstract][Full Text] [Related]
11. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde. Thornalley PJ; Stern A Biochem Pharmacol; 1985 Apr; 34(8):1157-64. PubMed ID: 3994738 [TBL] [Abstract][Full Text] [Related]
13. The effect of nitrone spin trapping agents on red cell glucose metabolism. Thornalley PJ; Stern A Free Radic Res Commun; 1985; 1(2):111-7. PubMed ID: 3880276 [TBL] [Abstract][Full Text] [Related]
14. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Trotta RJ; Sullivan SG; Stern A Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393 [TBL] [Abstract][Full Text] [Related]
15. Contributions of superoxide, hydrogen peroxide, and transition metal ions to auto-oxidation of the favism-inducing pyrimidine aglycone, divicine, and its reactions with haemoglobin. Winterbourn CC; Benatti U; De Flora A Biochem Pharmacol; 1986 Jun; 35(12):2009-15. PubMed ID: 3013207 [TBL] [Abstract][Full Text] [Related]
16. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Goodwin GW; Cohen DM; Taegtmeyer H Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E502-8. PubMed ID: 11171606 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of phosphoenolpyruvate carboxykinase, glyceroneogenesis and fatty acid synthesis in rat adipose tissue by quinolinate and 3-mercaptopicolinate. MacDonald MJ; Grewe BK Biochim Biophys Acta; 1981 Jan; 663(1):302-13. PubMed ID: 7213768 [TBL] [Abstract][Full Text] [Related]
18. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS; Arnold MJ; Brassell MA; Sliter DR Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [TBL] [Abstract][Full Text] [Related]
19. Effect of tryptophan metabolites on the activities of rat liver pyridoxal kinase and pyridoxamine 5-phosphate oxidase in vitro. Takeuchi F; Tsubouchi R; Shibata Y Biochem J; 1985 Apr; 227(2):537-44. PubMed ID: 2988502 [TBL] [Abstract][Full Text] [Related]
20. The effect of glyceraldehyde on red cells. Haemoglobin status, oxidative metabolism and glycolysis. Thornalley PJ; Stern A Biochim Biophys Acta; 1984 Jul; 804(3):308-23. PubMed ID: 6743693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]